Nugget splash during aluminum alloys spot welding has a detrimental effect on weld nugget integrity, strength and durability of the welded joints. This investigation is performed to identify nugget splash from voltage...Nugget splash during aluminum alloys spot welding has a detrimental effect on weld nugget integrity, strength and durability of the welded joints. This investigation is performed to identify nugget splash from voltage signals because these are easily accessible on-line. In the present work, we propose a novel method based on the wavelet packet transform and its energy spectrum for pattern recognition of splash signal. The result demonstrates that this novel method is more accuracy and a useful way of monitoring the spot welding quality.展开更多
The theory and method of wavelet packet decomposition and its energy spectrum dealing with the coal rock Interface Identification are presented in the paper. The characteristic frequency band of the coal rock signal c...The theory and method of wavelet packet decomposition and its energy spectrum dealing with the coal rock Interface Identification are presented in the paper. The characteristic frequency band of the coal rock signal could be identified by wavelet packet decomposition and its energy spectrum conveniently, at the same time, quantification analysis were performed. The result demonstrates that this method is more advantageous and of practical value than traditional Fourier analysis method.展开更多
The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response un...The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response under various scales are further formulated. The theoretical analysis results reveal that the wavelet packet energy spectrum (WPES) obtained from wavelet packet decomposition of structural dynamic response will detect the presence of structural damage. The sensitivity analysis of the WPES to structural damage and measurement noise is also performed. The transfer properties of the structural system matrix and the observation noise under various analysis scales are formulated, which verify the damage alarming reliability using the proposed WPES with preferable damage sensitivity and noise robusticity.展开更多
During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vib...During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vibration-based health monitoring methods is to seek some damage indices that are sensitive to structural damage, This paper proposes an online structural health monitoring method for long-span suspension bridges using wavelet packet transform (WPT). The WPT- based method is based on the energy variations of structural ambient vibration responses decomposed using wavelet packet analysis. The main feature of this method is that the proposed wavelet packet energy spectrum (WPES) has the ability to detect structural damage from ambient vibration tests of a long-span suspension bridge. As an example application, the WPES-based health monitoring system is used on the Runyang Suspension Bridge under daily environmental conditions. The analysis reveals that changes in environmental temperature have a long-term influence on the WPES, while the effect of traffic loadings on the measured WPES of the bridge presents instantaneous changes because of the nonstationary properties of the loadings. The condition indication indices VD reflect the influences of environmental temperature on the dynamic properties of the Runyang Suspension Bridge. The field tests demonstrate that the proposed WPES-based condition indication index VD is a good candidate index for health monitoring of long-span suspension bridges under ambient excitations.展开更多
The energy characteristics in the evolution of the wave train are investigated to understand the inherent cause of the freak wave generation. The Morlet wavelet spectrum method is employed to analyze the numerical, la...The energy characteristics in the evolution of the wave train are investigated to understand the inherent cause of the freak wave generation. The Morlet wavelet spectrum method is employed to analyze the numerical, laboratory and field evolution data of this generation process. Their energy distributions and variations are discussed with consideration of corresponding surface elevations. Through comparing the energy characteristics of three cases, it is shown that the freak wave generation depends not only on the continuous transfer of wave train energy to a certain region where finally the maximum energy occurs, but also on the distinct shift of the converged energy to high-frequency components in a very short time. And the typical energy characteristics of freak waves are also given.展开更多
In order to establish an environmental-condition-normalized structural damage alarming method, the seasonal correlation analysis of wavelet packet energy spectrum (WPES) and temperature of Runyang Suspension Bridge is...In order to establish an environmental-condition-normalized structural damage alarming method, the seasonal correlation analysis of wavelet packet energy spectrum (WPES) and temperature of Runyang Suspension Bridge is performed by means of the 236-day health monitoring data. The analysis results reveal that the measured WPES has remarkable seasonal correlation with the environmental temperature. The seasonal change of environmental temperature accounts for the variation of the damage alarming parameter I <SUB>p </SUB>of the dominant frequency bands with an averaged variance of 200%. The statistical modeling technique using a 6th-order polynomial is adopted to formulate the correlation between the WPES and temperature, on the basis of which the abnormal changes of measured damage alarming parameter I <SUB>p </SUB>are detected using the mean value control chart. It is found that the proposed method can effectively eliminate temperature complications from the time series of WPES and exhibit good capability for detecting the damage-induced 10% variances of the damage alarming parameter I <SUB>p </SUB>. And the proposed WPES-based method is superior the modal frequency and hence is more suitable for online real-time damage alarming for long-span bridges.展开更多
Drill wear not only affects the surface smoothness of the hole, but also influences the life of the drill. Drill wear state recognition is important in the manufacturing process, which consists of two steps: first, d...Drill wear not only affects the surface smoothness of the hole, but also influences the life of the drill. Drill wear state recognition is important in the manufacturing process, which consists of two steps: first, decomposing cutting torque components from the original signals by wavelet packet decomposition (WPD); second, extracting wavelet coefficients of different wear states (i.e., slight, normal, or severe wear) with signal features adapting to Welch spectrum. Finally, monitoring and recognition of the feature vectors of cutting torque signal are performed by using the K-means cluster and radial basis function neural network (RBFNN). The experiments on different tool wears of the multivariable features reveal that the results of monitoring and recognition are significant and effective.展开更多
The structural damage alarming method based on wavelet packet energy spectrum (WPES) for long-span cable-stayed bridges is presented through combination of ambient vibration test and wavelet packet analysis. The envir...The structural damage alarming method based on wavelet packet energy spectrum (WPES) for long-span cable-stayed bridges is presented through combination of ambient vibration test and wavelet packet analysis. The environmental variability in the measured WPES and damage alarming indices ERVD of the Runyang Cable-stayed Bridge are discussed in detail using the wavelet packet analysis of the measured acceleration responses of the bridge under daily environmental conditions. The analysis results reveal that the actual environmental conditions including traffic loadings, environmental temperature and typhoon loadings have remarkable correlations with the measured WPES. The changes of environmental temperature have a long-term trend influence on the WPES, while the influences of traffic and typhoon loadings on the measured WPES of the bridge present instantaneous changes because of the nonstationary properties of the loadings. The analysis results of the measured responses further reveal that the damage alarming indices ERVD can sensitively reflect the influences of environmental temperature and typhoon loadings on the dynamic properties of Runyang Cable-stayed Bridge. Therefore, the proposed structural damage alarming indices ERVD under ambient vibrations are suitable for real-time damage alarming for long-span cable-stayed bridges.展开更多
基金This work is supported by Nature Science Foundation of Peo-ple ' s Republic of China ( No.50045019).
文摘Nugget splash during aluminum alloys spot welding has a detrimental effect on weld nugget integrity, strength and durability of the welded joints. This investigation is performed to identify nugget splash from voltage signals because these are easily accessible on-line. In the present work, we propose a novel method based on the wavelet packet transform and its energy spectrum for pattern recognition of splash signal. The result demonstrates that this novel method is more accuracy and a useful way of monitoring the spot welding quality.
文摘The theory and method of wavelet packet decomposition and its energy spectrum dealing with the coal rock Interface Identification are presented in the paper. The characteristic frequency band of the coal rock signal could be identified by wavelet packet decomposition and its energy spectrum conveniently, at the same time, quantification analysis were performed. The result demonstrates that this method is more advantageous and of practical value than traditional Fourier analysis method.
文摘The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response under various scales are further formulated. The theoretical analysis results reveal that the wavelet packet energy spectrum (WPES) obtained from wavelet packet decomposition of structural dynamic response will detect the presence of structural damage. The sensitivity analysis of the WPES to structural damage and measurement noise is also performed. The transfer properties of the structural system matrix and the observation noise under various analysis scales are formulated, which verify the damage alarming reliability using the proposed WPES with preferable damage sensitivity and noise robusticity.
基金National Hi-Tech Research and Development Program of China (863 Program) (No. 2006AA04Z416)the National Natural Science Foundation of China Under Grant No. 50538020
文摘During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vibration-based health monitoring methods is to seek some damage indices that are sensitive to structural damage, This paper proposes an online structural health monitoring method for long-span suspension bridges using wavelet packet transform (WPT). The WPT- based method is based on the energy variations of structural ambient vibration responses decomposed using wavelet packet analysis. The main feature of this method is that the proposed wavelet packet energy spectrum (WPES) has the ability to detect structural damage from ambient vibration tests of a long-span suspension bridge. As an example application, the WPES-based health monitoring system is used on the Runyang Suspension Bridge under daily environmental conditions. The analysis reveals that changes in environmental temperature have a long-term influence on the WPES, while the effect of traffic loadings on the measured WPES of the bridge presents instantaneous changes because of the nonstationary properties of the loadings. The condition indication indices VD reflect the influences of environmental temperature on the dynamic properties of the Runyang Suspension Bridge. The field tests demonstrate that the proposed WPES-based condition indication index VD is a good candidate index for health monitoring of long-span suspension bridges under ambient excitations.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.10902039 and 41106031)
文摘The energy characteristics in the evolution of the wave train are investigated to understand the inherent cause of the freak wave generation. The Morlet wavelet spectrum method is employed to analyze the numerical, laboratory and field evolution data of this generation process. Their energy distributions and variations are discussed with consideration of corresponding surface elevations. Through comparing the energy characteristics of three cases, it is shown that the freak wave generation depends not only on the continuous transfer of wave train energy to a certain region where finally the maximum energy occurs, but also on the distinct shift of the converged energy to high-frequency components in a very short time. And the typical energy characteristics of freak waves are also given.
基金Supported by the National Natural Science Foundation of China(Grant Nos.50725828,50808041)the Natural Science Foundation of Jiangsu Province(Grant No.BK2008312)
文摘In order to establish an environmental-condition-normalized structural damage alarming method, the seasonal correlation analysis of wavelet packet energy spectrum (WPES) and temperature of Runyang Suspension Bridge is performed by means of the 236-day health monitoring data. The analysis results reveal that the measured WPES has remarkable seasonal correlation with the environmental temperature. The seasonal change of environmental temperature accounts for the variation of the damage alarming parameter I <SUB>p </SUB>of the dominant frequency bands with an averaged variance of 200%. The statistical modeling technique using a 6th-order polynomial is adopted to formulate the correlation between the WPES and temperature, on the basis of which the abnormal changes of measured damage alarming parameter I <SUB>p </SUB>are detected using the mean value control chart. It is found that the proposed method can effectively eliminate temperature complications from the time series of WPES and exhibit good capability for detecting the damage-induced 10% variances of the damage alarming parameter I <SUB>p </SUB>. And the proposed WPES-based method is superior the modal frequency and hence is more suitable for online real-time damage alarming for long-span bridges.
文摘Drill wear not only affects the surface smoothness of the hole, but also influences the life of the drill. Drill wear state recognition is important in the manufacturing process, which consists of two steps: first, decomposing cutting torque components from the original signals by wavelet packet decomposition (WPD); second, extracting wavelet coefficients of different wear states (i.e., slight, normal, or severe wear) with signal features adapting to Welch spectrum. Finally, monitoring and recognition of the feature vectors of cutting torque signal are performed by using the K-means cluster and radial basis function neural network (RBFNN). The experiments on different tool wears of the multivariable features reveal that the results of monitoring and recognition are significant and effective.
基金the National Hi-Tech Research and Development Program of China (Grant No. 2006AA04Z416)the National Natural Science Foundation of China (Grant No. 50538020)
文摘The structural damage alarming method based on wavelet packet energy spectrum (WPES) for long-span cable-stayed bridges is presented through combination of ambient vibration test and wavelet packet analysis. The environmental variability in the measured WPES and damage alarming indices ERVD of the Runyang Cable-stayed Bridge are discussed in detail using the wavelet packet analysis of the measured acceleration responses of the bridge under daily environmental conditions. The analysis results reveal that the actual environmental conditions including traffic loadings, environmental temperature and typhoon loadings have remarkable correlations with the measured WPES. The changes of environmental temperature have a long-term trend influence on the WPES, while the influences of traffic and typhoon loadings on the measured WPES of the bridge present instantaneous changes because of the nonstationary properties of the loadings. The analysis results of the measured responses further reveal that the damage alarming indices ERVD can sensitively reflect the influences of environmental temperature and typhoon loadings on the dynamic properties of Runyang Cable-stayed Bridge. Therefore, the proposed structural damage alarming indices ERVD under ambient vibrations are suitable for real-time damage alarming for long-span cable-stayed bridges.