In the development of Li-ion batteries(LIBs)with high energy/power density,long cycle-life,fast charging,and high safety,an insight into charge transfer reactions is required.Although electrochemical impedance spectro...In the development of Li-ion batteries(LIBs)with high energy/power density,long cycle-life,fast charging,and high safety,an insight into charge transfer reactions is required.Although electrochemical impedance spectroscopy(EIS)is regarded as a powerful diagnosis tool,it is not a direct but an indirect measurement.With respect to this,some critical questions need to be answered:(i)why EIS can reflect the kinetics of charge transfer reactions;(ii)what the inherent logical relationship between impedance models under different physical scenes is;(iii)how charge transfer reactions compete with each other at multiple scales.This work aims at answering these questions via developing a theory framework so as to mitigate the blindness and uncertainty in unveiling charge transfer reactions in LIBs.To systematically answer the above questions,this article is organized into a three-in-one(review,tutorial,and research)type and the following contributions are made:(i)a brief review is given for impedance model development of the LIBs over the past half century;(ii)an open source code toolbox is developed based on the unified impedance model;(iii)the competive mechanisms of charge transfer reactions are unveiled based on the developed EIS-Toolbox@LIB.This work not only clarifies theoretical fundamentals,but also provides an easy-to-use open source code for EIS-Toolbox@LIB to optimize fast charge/discharge,mitigate cycle aging,and improve energy/power density.展开更多
The interaction between metal and support is critical in oxygen catalysis as it governs the charge transfer between these two entities,influences the electronic structures of the supported metal,affects the adsorption...The interaction between metal and support is critical in oxygen catalysis as it governs the charge transfer between these two entities,influences the electronic structures of the supported metal,affects the adsorption energies of reaction intermediates,and ultimately impacts the catalytic performance.In this study,we discovered a unique charge transfer reversal phenomenon in a metal/carbon nanohybrid system.Specifically,electrons were transferred from the metal-based species to N-doped carbon,while the carbon support reciprocally donated electrons to the metal domain upon the introduction of nickel.This led to the exceptional electrocatalytic performances of the resulting Ni-Fe/Mo_(2)C@nitrogen-doped carbon catalyst,with a half-wave potential of 0.91 V towards oxygen reduction reaction(ORR)and a low overpotential of 290 m V at 10 mA cm^(-2)towards oxygen evolution reaction(OER)under alkaline conditions.Additionally,the Fe-Ni/Mo_(2)C@carbon heterojunction catalyst demonstrated high specific capacity(794 mA h g_(Zn)~(-1))and excellent cycling stability(200 h)in a Zn-air battery.Theoretical calculations revealed that Mo_(2)C effectively inhibited charge transfer from Fe to the support,while secondary doping of Ni induced a charge transfer reversal,resulting in electron accumulation in the Fe-Ni alloy region.This local electronic structure modulation significantly reduced energy barriers in the oxygen catalysis process,enhancing the catalytic efficiency of both ORR and OER.Consequently,our findings underscore the potential of manipulating charge transfer reversal between the metal and support as a promising strategy for developing highly-active and durable bi-functional oxygen electrodes.展开更多
The Haber-Bosch process for industrial NH_(3) production is energy-intensive with heavy CO_(2) emissions.Electrochemical N_(2) reduction reaction(NRR)is an attractive carbon-neutral alternative for NH_(3) synthesis,wh...The Haber-Bosch process for industrial NH_(3) production is energy-intensive with heavy CO_(2) emissions.Electrochemical N_(2) reduction reaction(NRR)is an attractive carbon-neutral alternative for NH_(3) synthesis,while the challenge associated with N_(2) activation highlights the demand for efficient electrocatalysts.Herein,we demonstrate that PdCu nanoparticles with different Pd/Cu ratios anchored on boron nanosheet(PdCu/B)behave as efficient NRR electrocatalysts toward NH_(3) synthesis.Theoretical and experimental results confirm that the highly efficient NH_(3) synthesis can be achieved by regulating the charge transfer between interfaces and forming a symmetry-breaking site,which not only alleviates the hydrogen evolution but also changes the adsorption configuration of N_(2) and thus optimizes the reaction pathway of NRR over the separated Pd sites.Compared with monometallic Pd/B and Cu/B,the PdCu/B with the optimized Pd/Cu ratio of 1 exhibits superior activity and selectivity for NH_(3) synthesis.This study provides new insight into developing efficient catalysts for small energy molecule catalytic conversion via regulating the charge transfer between interfaces and constructing symmetry-breaking sites.展开更多
Ce^4+-doped Ca2SnO4 with a one-dimensional structure, which emits bright blue light, is prepared by using a solid-state reaction method. The x-ray diffraction results show that the Ce^4+ ions doped in Ca2SnO4 occupy...Ce^4+-doped Ca2SnO4 with a one-dimensional structure, which emits bright blue light, is prepared by using a solid-state reaction method. The x-ray diffraction results show that the Ce^4+ ions doped in Ca2SnO4 occupy the Sn^4+ sites. The excitation and emission spectra of Ca2Sn1-xCexO4 appear to have broad bands with peaks at - 268nm and -442nm, respectively. A long excited-state lifetime (-83μs) for the emission from Ca2Sn1-xCexO4 suggests that the luminescence originates from a ligand-to-metal Ce^4+ charge transfer (CT). The luminescent properties of Ca2Snl_xCexO4 have been compared with those of Sr2CeO4, which is the only material reported so far to show Ce^4+ CT luminescence. More interestingly, it is observed that the emission intensity of Ca2Sn1-xCexO4 with a small doping concentration (x - 0.03) is comparable to that of Sr2CeO4 in which the concentration of active centre is 100%.展开更多
Photoinduced charge transfer reaction of benzophenone(BP) with, mine was carried out in the vesicles of dicetyldimethylammonium bromide (DCDAB) over wide ranges of amine concentration (0. 01~4. 0M). Linear plots of ...Photoinduced charge transfer reaction of benzophenone(BP) with, mine was carried out in the vesicles of dicetyldimethylammonium bromide (DCDAB) over wide ranges of amine concentration (0. 01~4. 0M). Linear plots of φ^(-1) vs. [TEA]^(-1) at low concentration of amine (<0.02M) and Φ^(-1) vs. [TEA]^(-2) at high concentration were obtained. Kinetic data demonstrate that the electron transfer is promoted significantly by DCDAB vesicles and proton transfer becomes more efficient at high Rmlne concentrations, leading to a decrease of Kd/Kr and increase of Kh/Ke. The kinetic expressions of photoreaction of BP bound to DCDAB bilayer are developed.展开更多
The H^++CO2 reaction at high energies is relevant in atmospheric chemistry,astrophysics,and proton cancer therapy research.Therefore,we present herein a complete investigation of H^++CO2 at ELab=30 eV with the simples...The H^++CO2 reaction at high energies is relevant in atmospheric chemistry,astrophysics,and proton cancer therapy research.Therefore,we present herein a complete investigation of H^++CO2 at ELab=30 eV with the simplest-level electron nuclear dynamics(SLEND)method.SLEND describes nuclei via classical mechanics and electrons with a singledeterminantal Thouless wavefunction.The 3402 SLEND conducted simulations from 42 independent CO2 target orientations provide a full description of all the reactive processes and their mechanisms in this system:non-charge-transfer scattering(NCTS),charge-transfer scattering(CTS),and single C=O bond dissociation;all this valuable information about reactivity is not accessible experimentally.Numerous details of the projectile scattering patterns are provided,including the appearance and coalescence of primary and secondary rainbow angles as a function of the target orientation.SLEND NCTS and CTS differential cross sections(DCSs)are evaluated in conjunction with advanced semi-classical techniques.SLEND NCTS DCS agrees well with its experimental counterpart at all the measured scattering angles,whereas SLEND CTS DCS agrees well at high scattering angles but less satisfactorily at lower ones.Remarkably,both NCTS and CTS SLEND DCSs predict the primary rainbow angle signatures in agreement with the experiment.展开更多
The effect of composition and annealing temperature on charge transfer properties, in a donor/acceptor nanocomposites based on poly (2-methoxy-5-(2-ethyhexyl-oxy)-p-phenylenevinylene) (MEH-PPV) and MWCNTs functionaliz...The effect of composition and annealing temperature on charge transfer properties, in a donor/acceptor nanocomposites based on poly (2-methoxy-5-(2-ethyhexyl-oxy)-p-phenylenevinylene) (MEH-PPV) and MWCNTs functionalized with Polystyrene (PS:MWCNTs), have been investigated. The quenching of photoluminescence (PL) intensity of pure MEH-PPV, by adding different amounts of functionalized carbon nanotubes, exhibits that a photoinduced charge transfer has been occurred. Charge transfer efficiency was obtained for an acceptable concentration of PS:MWCNTs about 0.5 wt% and at annealed temperature of about 80℃. Quenching efficiency studies imply that MEH-PPV/PS:MWCNTs nanocomposites reveal a high degree of PL quenching, reaching a value of η = 76.9%.展开更多
The ab initio method has been used to study the 1-3 H transfer reaction on formamidine substituted by halogen. The calculation results show that the substituted halogen has two effects on the 1-3 H transfer reaction...The ab initio method has been used to study the 1-3 H transfer reaction on formamidine substituted by halogen. The calculation results show that the substituted halogen has two effects on the 1-3 H transfer reaction: decreasing the activation energy and stabilizing the C=N double bond owing to the conjugative effect of p-π-p of products and transition states.展开更多
Early events of charge separation in reaction centers (RCs) of bacterial photosynthesis are modeled by kinetic equations with time-dependent rate constants. An illustrative case of regular motion along a “slow” coor...Early events of charge separation in reaction centers (RCs) of bacterial photosynthesis are modeled by kinetic equations with time-dependent rate constants. An illustrative case of regular motion along a “slow” coordinates leading to oscillations in the kinetics is examined. Different schemes of charge separation are investigated. A good fitting of experimental kinetics of native Rba. sphaeroides RCs is achieved in the five states model P*1BAHA↔P*2BAHA↔I↔P+HA↔P+BA with two excited states BAHA and BAHA and three charge separated states I, P+HA and P+BA (P is a primary electron donor, bacteriochlorophyll dimer, BA and HA are an electron acceptor, monomeric bacteriochlorophyll and bacteriopheophytin in active A-branch, respectively). In the model only the first excited state is directly populated by optical excitation. The emission of the two excited states is assumed to be at 905 and 940 nm, respectively. The intermediate state I is assumed to absorb at 1020 nm as well as the P+HA state. The model explains the deep oscillations in the kinetics of the stimulated emission and of the absorption. In the simpler schemes without the I state or with only one excited state the accordance with the experiment is achieved at unreal parameter values. A possible nature of the I and BAHA states and a possible incoherent nature of the oscillations are discussed.展开更多
Obtaining a detailed understanding of the surface modification of supports is crucial;however,it is a challenging task for the development and large-scale fabrication of supported electrocatalysts that can be used as ...Obtaining a detailed understanding of the surface modification of supports is crucial;however,it is a challenging task for the development and large-scale fabrication of supported electrocatalysts that can be used as alternatives to Pt-based catalysts for the oxygen reduction reaction(ORR).In this study,commercial silicon carbide(SiC)was modified through surface oxidization(O-SiC)to support the use of Pd nanoparticles(Pd NPs)as electrocatalysts for ORR.The obtained Pd/O-SiC catalysts exhibited better ORR activity,stronger durability,and higher resistance to methanol poisoning than that exhibited by commercial Pt/C.The role of the support in enhancing the ORR performance,especially the oxidization of SiC surfaces,was discussed in detail based on the experimental characterizations and density functional theory calculations.The underlying mechanism of the superior ORR performance of Pd/O-SiC catalysts was attributed to the charge transfer from SiC_(x)O_(y)to Pd NPs on the surfaces of SiC and the strong metal–support interactions(SMSIs)between Pd and SiC_(x)O_(y).The charge transfer enhanced the ORR activity by inducing electron-rich Pd,increased the adsorption of the key intermediate OOH,and decreased the Gibbs free energy of the critical ORR step.Furthermore,SMSIs enhanced the ORR stability of the Pd/O-SiC catalyst.This study provided a facile route for designing and developing highly active Pd-based ORR electrocatalysts.展开更多
Electrocatalysis is an efficient green process for energy conversion.However,for gas-related electrocatalytic reaction,sluggish gas transport has inhibited significantly the promotion of electrocatalytic performances....Electrocatalysis is an efficient green process for energy conversion.However,for gas-related electrocatalytic reaction,sluggish gas transport has inhibited significantly the promotion of electrocatalytic performances.Herein,hierarchical monolithic material 3 DPC-650 and 3 DPC-650@Ni/Ni(OH)_(2) were prepared by3 D printing polyethyleneimine cross-linking oxygenated carbon nanotube and following nickel electrodeposition.3 DPC-650 and 3 DPC-650@Ni/Ni(OH)_(2) have regular pore structure in consistence with3 D printing design and uniform dispersed elements.Amide bonds and carbon defects are presented on the surface of 3 DPC-650 and 3 DPC-650@Ni/Ni(OH)_(2) as well as uniformly distributed β-Ni(OH)_(2) on3 DPC-650@Ni/Ni(OH)_(2).3 DPC-650 and 3 DPC-650@Ni/Ni(OH)_(2) present lower overpotentials of 322 and160 mV for hydrogen evolution reaction in 1.0 M KOH at 50 mA cm^(-2),respectively.The ordered channel,high turnover frequency and electrochemically active surface area,hydrophilic and aerophobic properties result in the higher performance of 3 DPC-650 and 3 DPC-650@Ni/Ni(OH)_(2) than traditional supports(carbon paper,carbon cloth,and nickel foam) and electrocatalysts.This work provides an efficient pathway for design and preparation of the monolithic electrocatalyst and electrode used for electrochemical reactions where gas is involved.展开更多
A spectrophotometric method for the determination of azithromycin has been developed based on the charge transfer reaction.The reaction between azithromycin and 7,7,8,8-tetracyanoquinodemethane((TCNQ)) was complet...A spectrophotometric method for the determination of azithromycin has been developed based on the charge transfer reaction.The reaction between azithromycin and 7,7,8,8-tetracyanoquinodemethane((TCNQ)) was completed in acetone medium in 30 minutes at 50 ℃.Beer′s law is obeyed in the range of(12.1)867.6 mg/L for the determination of azithromycin.The molar absorptivity of the complex at 745 nm is 1.44×103 L/(mol·cm).The relative standard deviation is 0.96%(n=10).The composition ratio of the charge transfer complex was found to be 1∶[KG-*3/5]1 by means of the slope ratio and Job′s methods.This method has been applied to the determination of azithromycin in tablets with satisfactory results compared with the Pharmacopoeia method.Recovery was 100.5%.展开更多
基金the financial support from the National Science Foundation of China(22078190)the National Key R&D Plan of China(2020YFB1505802)。
文摘In the development of Li-ion batteries(LIBs)with high energy/power density,long cycle-life,fast charging,and high safety,an insight into charge transfer reactions is required.Although electrochemical impedance spectroscopy(EIS)is regarded as a powerful diagnosis tool,it is not a direct but an indirect measurement.With respect to this,some critical questions need to be answered:(i)why EIS can reflect the kinetics of charge transfer reactions;(ii)what the inherent logical relationship between impedance models under different physical scenes is;(iii)how charge transfer reactions compete with each other at multiple scales.This work aims at answering these questions via developing a theory framework so as to mitigate the blindness and uncertainty in unveiling charge transfer reactions in LIBs.To systematically answer the above questions,this article is organized into a three-in-one(review,tutorial,and research)type and the following contributions are made:(i)a brief review is given for impedance model development of the LIBs over the past half century;(ii)an open source code toolbox is developed based on the unified impedance model;(iii)the competive mechanisms of charge transfer reactions are unveiled based on the developed EIS-Toolbox@LIB.This work not only clarifies theoretical fundamentals,but also provides an easy-to-use open source code for EIS-Toolbox@LIB to optimize fast charge/discharge,mitigate cycle aging,and improve energy/power density.
基金financially supported by the Outstanding Youth Scientific Research Project for Colleges and Universities of Anhui Province of China (2022AH020054)the Anhui Provincial Natural Science Foundation (2208085Y06)+2 种基金the National Natural Science Foundation of China (Nos.21975001 and U2002213)the Support Program of Excellent Young Talents in Anhui Provincial Colleges and Universities (gxyq ZD2022034)the Double Tops Joint Fund of the Yunnan Science and Technology Bureau and Yunnan University (2019FY003025)。
文摘The interaction between metal and support is critical in oxygen catalysis as it governs the charge transfer between these two entities,influences the electronic structures of the supported metal,affects the adsorption energies of reaction intermediates,and ultimately impacts the catalytic performance.In this study,we discovered a unique charge transfer reversal phenomenon in a metal/carbon nanohybrid system.Specifically,electrons were transferred from the metal-based species to N-doped carbon,while the carbon support reciprocally donated electrons to the metal domain upon the introduction of nickel.This led to the exceptional electrocatalytic performances of the resulting Ni-Fe/Mo_(2)C@nitrogen-doped carbon catalyst,with a half-wave potential of 0.91 V towards oxygen reduction reaction(ORR)and a low overpotential of 290 m V at 10 mA cm^(-2)towards oxygen evolution reaction(OER)under alkaline conditions.Additionally,the Fe-Ni/Mo_(2)C@carbon heterojunction catalyst demonstrated high specific capacity(794 mA h g_(Zn)~(-1))and excellent cycling stability(200 h)in a Zn-air battery.Theoretical calculations revealed that Mo_(2)C effectively inhibited charge transfer from Fe to the support,while secondary doping of Ni induced a charge transfer reversal,resulting in electron accumulation in the Fe-Ni alloy region.This local electronic structure modulation significantly reduced energy barriers in the oxygen catalysis process,enhancing the catalytic efficiency of both ORR and OER.Consequently,our findings underscore the potential of manipulating charge transfer reversal between the metal and support as a promising strategy for developing highly-active and durable bi-functional oxygen electrodes.
基金National Key R&D Program of China,Grant/Award Number:2020YFA0710000National Natural Science Foundation of China,Grant/Award Numbers:22008170,21978200,22161142002,22121004。
文摘The Haber-Bosch process for industrial NH_(3) production is energy-intensive with heavy CO_(2) emissions.Electrochemical N_(2) reduction reaction(NRR)is an attractive carbon-neutral alternative for NH_(3) synthesis,while the challenge associated with N_(2) activation highlights the demand for efficient electrocatalysts.Herein,we demonstrate that PdCu nanoparticles with different Pd/Cu ratios anchored on boron nanosheet(PdCu/B)behave as efficient NRR electrocatalysts toward NH_(3) synthesis.Theoretical and experimental results confirm that the highly efficient NH_(3) synthesis can be achieved by regulating the charge transfer between interfaces and forming a symmetry-breaking site,which not only alleviates the hydrogen evolution but also changes the adsorption configuration of N_(2) and thus optimizes the reaction pathway of NRR over the separated Pd sites.Compared with monometallic Pd/B and Cu/B,the PdCu/B with the optimized Pd/Cu ratio of 1 exhibits superior activity and selectivity for NH_(3) synthesis.This study provides new insight into developing efficient catalysts for small energy molecule catalytic conversion via regulating the charge transfer between interfaces and constructing symmetry-breaking sites.
文摘Ce^4+-doped Ca2SnO4 with a one-dimensional structure, which emits bright blue light, is prepared by using a solid-state reaction method. The x-ray diffraction results show that the Ce^4+ ions doped in Ca2SnO4 occupy the Sn^4+ sites. The excitation and emission spectra of Ca2Sn1-xCexO4 appear to have broad bands with peaks at - 268nm and -442nm, respectively. A long excited-state lifetime (-83μs) for the emission from Ca2Sn1-xCexO4 suggests that the luminescence originates from a ligand-to-metal Ce^4+ charge transfer (CT). The luminescent properties of Ca2Snl_xCexO4 have been compared with those of Sr2CeO4, which is the only material reported so far to show Ce^4+ CT luminescence. More interestingly, it is observed that the emission intensity of Ca2Sn1-xCexO4 with a small doping concentration (x - 0.03) is comparable to that of Sr2CeO4 in which the concentration of active centre is 100%.
文摘Photoinduced charge transfer reaction of benzophenone(BP) with, mine was carried out in the vesicles of dicetyldimethylammonium bromide (DCDAB) over wide ranges of amine concentration (0. 01~4. 0M). Linear plots of φ^(-1) vs. [TEA]^(-1) at low concentration of amine (<0.02M) and Φ^(-1) vs. [TEA]^(-2) at high concentration were obtained. Kinetic data demonstrate that the electron transfer is promoted significantly by DCDAB vesicles and proton transfer becomes more efficient at high Rmlne concentrations, leading to a decrease of Kd/Kr and increase of Kh/Ke. The kinetic expressions of photoreaction of BP bound to DCDAB bilayer are developed.
基金Present calculations were performed at the Texas Tech University High Performance Computer Center and the Texas Advanced Computing Center at the University of Texas at Austin.Prof.Morales acknowledges financial support from the Cancer Prevention and Research Institute of Texas(CPRIT)grant RP140478.Prof.Yan acknowledges the financial support from the National Natural Science Foundation of China(No.21373064)and the Program for Innovative Research Team of Guizhou Province(No.QKTD[2014]4021).
文摘The H^++CO2 reaction at high energies is relevant in atmospheric chemistry,astrophysics,and proton cancer therapy research.Therefore,we present herein a complete investigation of H^++CO2 at ELab=30 eV with the simplest-level electron nuclear dynamics(SLEND)method.SLEND describes nuclei via classical mechanics and electrons with a singledeterminantal Thouless wavefunction.The 3402 SLEND conducted simulations from 42 independent CO2 target orientations provide a full description of all the reactive processes and their mechanisms in this system:non-charge-transfer scattering(NCTS),charge-transfer scattering(CTS),and single C=O bond dissociation;all this valuable information about reactivity is not accessible experimentally.Numerous details of the projectile scattering patterns are provided,including the appearance and coalescence of primary and secondary rainbow angles as a function of the target orientation.SLEND NCTS and CTS differential cross sections(DCSs)are evaluated in conjunction with advanced semi-classical techniques.SLEND NCTS DCS agrees well with its experimental counterpart at all the measured scattering angles,whereas SLEND CTS DCS agrees well at high scattering angles but less satisfactorily at lower ones.Remarkably,both NCTS and CTS SLEND DCSs predict the primary rainbow angle signatures in agreement with the experiment.
文摘The effect of composition and annealing temperature on charge transfer properties, in a donor/acceptor nanocomposites based on poly (2-methoxy-5-(2-ethyhexyl-oxy)-p-phenylenevinylene) (MEH-PPV) and MWCNTs functionalized with Polystyrene (PS:MWCNTs), have been investigated. The quenching of photoluminescence (PL) intensity of pure MEH-PPV, by adding different amounts of functionalized carbon nanotubes, exhibits that a photoinduced charge transfer has been occurred. Charge transfer efficiency was obtained for an acceptable concentration of PS:MWCNTs about 0.5 wt% and at annealed temperature of about 80℃. Quenching efficiency studies imply that MEH-PPV/PS:MWCNTs nanocomposites reveal a high degree of PL quenching, reaching a value of η = 76.9%.
基金Supported by the Yunnan Provincial Science and Technology Department (2003A0003M)
文摘The ab initio method has been used to study the 1-3 H transfer reaction on formamidine substituted by halogen. The calculation results show that the substituted halogen has two effects on the 1-3 H transfer reaction: decreasing the activation energy and stabilizing the C=N double bond owing to the conjugative effect of p-π-p of products and transition states.
文摘Early events of charge separation in reaction centers (RCs) of bacterial photosynthesis are modeled by kinetic equations with time-dependent rate constants. An illustrative case of regular motion along a “slow” coordinates leading to oscillations in the kinetics is examined. Different schemes of charge separation are investigated. A good fitting of experimental kinetics of native Rba. sphaeroides RCs is achieved in the five states model P*1BAHA↔P*2BAHA↔I↔P+HA↔P+BA with two excited states BAHA and BAHA and three charge separated states I, P+HA and P+BA (P is a primary electron donor, bacteriochlorophyll dimer, BA and HA are an electron acceptor, monomeric bacteriochlorophyll and bacteriopheophytin in active A-branch, respectively). In the model only the first excited state is directly populated by optical excitation. The emission of the two excited states is assumed to be at 905 and 940 nm, respectively. The intermediate state I is assumed to absorb at 1020 nm as well as the P+HA state. The model explains the deep oscillations in the kinetics of the stimulated emission and of the absorption. In the simpler schemes without the I state or with only one excited state the accordance with the experiment is achieved at unreal parameter values. A possible nature of the I and BAHA states and a possible incoherent nature of the oscillations are discussed.
文摘Obtaining a detailed understanding of the surface modification of supports is crucial;however,it is a challenging task for the development and large-scale fabrication of supported electrocatalysts that can be used as alternatives to Pt-based catalysts for the oxygen reduction reaction(ORR).In this study,commercial silicon carbide(SiC)was modified through surface oxidization(O-SiC)to support the use of Pd nanoparticles(Pd NPs)as electrocatalysts for ORR.The obtained Pd/O-SiC catalysts exhibited better ORR activity,stronger durability,and higher resistance to methanol poisoning than that exhibited by commercial Pt/C.The role of the support in enhancing the ORR performance,especially the oxidization of SiC surfaces,was discussed in detail based on the experimental characterizations and density functional theory calculations.The underlying mechanism of the superior ORR performance of Pd/O-SiC catalysts was attributed to the charge transfer from SiC_(x)O_(y)to Pd NPs on the surfaces of SiC and the strong metal–support interactions(SMSIs)between Pd and SiC_(x)O_(y).The charge transfer enhanced the ORR activity by inducing electron-rich Pd,increased the adsorption of the key intermediate OOH,and decreased the Gibbs free energy of the critical ORR step.Furthermore,SMSIs enhanced the ORR stability of the Pd/O-SiC catalyst.This study provided a facile route for designing and developing highly active Pd-based ORR electrocatalysts.
基金supported by the National Natural Science Foundation of China (Grant No. 22078270)。
文摘Electrocatalysis is an efficient green process for energy conversion.However,for gas-related electrocatalytic reaction,sluggish gas transport has inhibited significantly the promotion of electrocatalytic performances.Herein,hierarchical monolithic material 3 DPC-650 and 3 DPC-650@Ni/Ni(OH)_(2) were prepared by3 D printing polyethyleneimine cross-linking oxygenated carbon nanotube and following nickel electrodeposition.3 DPC-650 and 3 DPC-650@Ni/Ni(OH)_(2) have regular pore structure in consistence with3 D printing design and uniform dispersed elements.Amide bonds and carbon defects are presented on the surface of 3 DPC-650 and 3 DPC-650@Ni/Ni(OH)_(2) as well as uniformly distributed β-Ni(OH)_(2) on3 DPC-650@Ni/Ni(OH)_(2).3 DPC-650 and 3 DPC-650@Ni/Ni(OH)_(2) present lower overpotentials of 322 and160 mV for hydrogen evolution reaction in 1.0 M KOH at 50 mA cm^(-2),respectively.The ordered channel,high turnover frequency and electrochemically active surface area,hydrophilic and aerophobic properties result in the higher performance of 3 DPC-650 and 3 DPC-650@Ni/Ni(OH)_(2) than traditional supports(carbon paper,carbon cloth,and nickel foam) and electrocatalysts.This work provides an efficient pathway for design and preparation of the monolithic electrocatalyst and electrode used for electrochemical reactions where gas is involved.
文摘A spectrophotometric method for the determination of azithromycin has been developed based on the charge transfer reaction.The reaction between azithromycin and 7,7,8,8-tetracyanoquinodemethane((TCNQ)) was completed in acetone medium in 30 minutes at 50 ℃.Beer′s law is obeyed in the range of(12.1)867.6 mg/L for the determination of azithromycin.The molar absorptivity of the complex at 745 nm is 1.44×103 L/(mol·cm).The relative standard deviation is 0.96%(n=10).The composition ratio of the charge transfer complex was found to be 1∶[KG-*3/5]1 by means of the slope ratio and Job′s methods.This method has been applied to the determination of azithromycin in tablets with satisfactory results compared with the Pharmacopoeia method.Recovery was 100.5%.