Nuclear charge density distribution plays an important role in both nuclear and atomic physics,for which the two-parameter Fermi(2pF)model has been widely applied as one of the most frequently used models.Currently,th...Nuclear charge density distribution plays an important role in both nuclear and atomic physics,for which the two-parameter Fermi(2pF)model has been widely applied as one of the most frequently used models.Currently,the feedforward neural network has been employed to study the available 2pF model parameters for 86 nuclei,and the accuracy and precision of the parameter-learning effect are improved by introducing A^(1∕3)into the input parameter of the neural network.Furthermore,the average result of multiple predictions is more reliable than the best result of a single prediction and there is no significant difference between the average result of the density and parameter values for the average charge density distribution.In addition,the 2pF parameters of 284(near)stable nuclei are predicted in this study,which provides a reference for the experiment.展开更多
Two possible complexes formed by the interaction of CH_3OH and H_2CO,one hydrogen-bonded (Ⅰ)and one donor-acceptor complex(Ⅱ),have been reported in the previous paper.Based on the ab initio 6-31G basis set calculati...Two possible complexes formed by the interaction of CH_3OH and H_2CO,one hydrogen-bonded (Ⅰ)and one donor-acceptor complex(Ⅱ),have been reported in the previous paper.Based on the ab initio 6-31G basis set calculations,the properties of the charge density for the complexeshave been analyzed using the theory of atoms in molecules.The nature of the complex formation has been discussed in terms of the properties of the charge density distributions.展开更多
Heavy ions and pulsed lasers are important means to simulate the ionization damage effects on semiconductor materials. The analytic solution of high-energy heavy ion energy loss in silicon has been obtained using the ...Heavy ions and pulsed lasers are important means to simulate the ionization damage effects on semiconductor materials. The analytic solution of high-energy heavy ion energy loss in silicon has been obtained using the Bethe-Bloch formula and the Kobetich-Katz theory, and some ionization damage parameters of Fe ions in silicon, such as the track structure and ionized charge density distribution, have been calculated and analyzed according to the theoretical calculation results. Using the Gaussian function and Beer's law, the parameters of the track structure and charge density distribution induced by a pulsed laser in silicon have also been calculated and compared with those of Fe ions in silicon, which provides a theoretical basis for ionization damage effect modeling.展开更多
The electronic and structural properties for Ti3SiC2 were studied using the first-principle calculation method. By using the calculated band structure and density of states, the high electrical conductivity of Ti3SiC2...The electronic and structural properties for Ti3SiC2 were studied using the first-principle calculation method. By using the calculated band structure and density of states, the high electrical conductivity of Ti3SiC2 are explained. The bonding character of Ti3SiC2 is analyzed in the map of charge density distribution.展开更多
The electronic properties of twinned ZnS nanowires (NWs) with different diameters were investigated based on first-principles calculations. The energy band structures, projected density of states and the spatial dis...The electronic properties of twinned ZnS nanowires (NWs) with different diameters were investigated based on first-principles calculations. The energy band structures, projected density of states and the spatial distributions of the bottom of conduction band and the top of the valence band were presented. The results show that the twinned nanowires exhibit a semiconducting character and the band gap decreases with increasing nanowire diameter due to quantum confinement effects. The valence band maximum and conduction band minimum originate mainly from the S-p and Zn-s orbitals at the core of the nanowires, respectively, which was confirmed by their spatial charge density distribution. We also found that no heterostructure is formed in the twinned ZnS NWs since the valence band maximum and conduction band minimum states are distributed along the NW axis uniformly. We suggest that the hexagonal (2H) stacking inside the cubic (3C) stacking has no effect on the electronic properties of thin ZnS NWs.展开更多
Orbital responses to methyl sites in CnH2n+2 (n = 1-6) are studied by B3LYP/TZVP based on the most stable geometries using the B3LYP/aug-cc-pVTZ method. Vertical ionization energies are produced using the SAOP/et-p...Orbital responses to methyl sites in CnH2n+2 (n = 1-6) are studied by B3LYP/TZVP based on the most stable geometries using the B3LYP/aug-cc-pVTZ method. Vertical ionization energies are produced using the SAOP/et-pVQZ model for the complete valence space. The highest occupied molecular orbital (HOMO) investigations indicate the p- electron profiles in methane, ethane, propane, and n-butane. By increasing the number of carbon-carbon bonds in lower momentum regions, the s, p-hybridized orbitals are built and display strong exchange and correlation interactions in lower momentum space (P 〈 0.50 a.u.). Meanwhile, the relative intensities of the isomers in lower momentum space show the strong bonding number dependence of the carbon-carbon bonds, meaning that more electrons have contributed to orbital construction. The study of representative valence orbital momentum distribution further confirms that the structural changes lead to evident electronic rearrangement over the whole valence space. An analysis based on the isomers reveals that the valence orbitals are isomer-dependent and the valence ionization energy experiences an apparent shift in the inner valence space. However, such shifts are greatly reduced in the outer valence space. Meanwhile, the opposite energy shift trend is found in the intermediate valence space.展开更多
基金supported by the Natural Science Foundation of Jilin Province (No. 20220101017JC)the National Natural Science Foundation of China (Nos. 11675063, 11875070, and 11935001)+1 种基金Key Laboratory of Nuclear Data foundation (JCKY2020201C157)the Anhui Project (Z010118169)
文摘Nuclear charge density distribution plays an important role in both nuclear and atomic physics,for which the two-parameter Fermi(2pF)model has been widely applied as one of the most frequently used models.Currently,the feedforward neural network has been employed to study the available 2pF model parameters for 86 nuclei,and the accuracy and precision of the parameter-learning effect are improved by introducing A^(1∕3)into the input parameter of the neural network.Furthermore,the average result of multiple predictions is more reliable than the best result of a single prediction and there is no significant difference between the average result of the density and parameter values for the average charge density distribution.In addition,the 2pF parameters of 284(near)stable nuclei are predicted in this study,which provides a reference for the experiment.
基金Projeet supported by the National Natural Science Foundation of China.
文摘Two possible complexes formed by the interaction of CH_3OH and H_2CO,one hydrogen-bonded (Ⅰ)and one donor-acceptor complex(Ⅱ),have been reported in the previous paper.Based on the ab initio 6-31G basis set calculations,the properties of the charge density for the complexeshave been analyzed using the theory of atoms in molecules.The nature of the complex formation has been discussed in terms of the properties of the charge density distributions.
基金Supported by Foundation of the National Laboratory of Vacuum & Cryogenics Technology and Physics (9140C5503070803)
文摘Heavy ions and pulsed lasers are important means to simulate the ionization damage effects on semiconductor materials. The analytic solution of high-energy heavy ion energy loss in silicon has been obtained using the Bethe-Bloch formula and the Kobetich-Katz theory, and some ionization damage parameters of Fe ions in silicon, such as the track structure and ionized charge density distribution, have been calculated and analyzed according to the theoretical calculation results. Using the Gaussian function and Beer's law, the parameters of the track structure and charge density distribution induced by a pulsed laser in silicon have also been calculated and compared with those of Fe ions in silicon, which provides a theoretical basis for ionization damage effect modeling.
文摘The electronic and structural properties for Ti3SiC2 were studied using the first-principle calculation method. By using the calculated band structure and density of states, the high electrical conductivity of Ti3SiC2 are explained. The bonding character of Ti3SiC2 is analyzed in the map of charge density distribution.
基金Project supported by the Special Funds of the National Natural Science Foundation of China (Grant No. 10947102)the Foundation of the Education Committee of Chongqing (Grant No. KJ090503)
文摘The electronic properties of twinned ZnS nanowires (NWs) with different diameters were investigated based on first-principles calculations. The energy band structures, projected density of states and the spatial distributions of the bottom of conduction band and the top of the valence band were presented. The results show that the twinned nanowires exhibit a semiconducting character and the band gap decreases with increasing nanowire diameter due to quantum confinement effects. The valence band maximum and conduction band minimum originate mainly from the S-p and Zn-s orbitals at the core of the nanowires, respectively, which was confirmed by their spatial charge density distribution. We also found that no heterostructure is formed in the twinned ZnS NWs since the valence band maximum and conduction band minimum states are distributed along the NW axis uniformly. We suggest that the hexagonal (2H) stacking inside the cubic (3C) stacking has no effect on the electronic properties of thin ZnS NWs.
基金supported by the National Natural Science Foundation of China (Grant Nos.10974139,11104247,and 11176020)
文摘Orbital responses to methyl sites in CnH2n+2 (n = 1-6) are studied by B3LYP/TZVP based on the most stable geometries using the B3LYP/aug-cc-pVTZ method. Vertical ionization energies are produced using the SAOP/et-pVQZ model for the complete valence space. The highest occupied molecular orbital (HOMO) investigations indicate the p- electron profiles in methane, ethane, propane, and n-butane. By increasing the number of carbon-carbon bonds in lower momentum regions, the s, p-hybridized orbitals are built and display strong exchange and correlation interactions in lower momentum space (P 〈 0.50 a.u.). Meanwhile, the relative intensities of the isomers in lower momentum space show the strong bonding number dependence of the carbon-carbon bonds, meaning that more electrons have contributed to orbital construction. The study of representative valence orbital momentum distribution further confirms that the structural changes lead to evident electronic rearrangement over the whole valence space. An analysis based on the isomers reveals that the valence orbitals are isomer-dependent and the valence ionization energy experiences an apparent shift in the inner valence space. However, such shifts are greatly reduced in the outer valence space. Meanwhile, the opposite energy shift trend is found in the intermediate valence space.