期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Charge deposition model for investigating SE-microdose effect in trench power MOSFETs 被引量:1
1
作者 万欣 周伟松 +2 位作者 刘道广 薄涵亮 许军 《Journal of Semiconductors》 EI CAS CSCD 2015年第5期31-36,共6页
It was demonstrated that heavy ions can induce large current-voltage (I-V) characteristics shift in commercial trench power MOSFETs, named single event microdose effect (SE-microdose effect). A model is pre- sente... It was demonstrated that heavy ions can induce large current-voltage (I-V) characteristics shift in commercial trench power MOSFETs, named single event microdose effect (SE-microdose effect). A model is pre- sented to describe this effect. This model calculates the charge deposition by a single heavy ion hitting oxide and the subsequent charge transport under an electric field. Holes deposited at the SiO2/Si interface by a Xe ion are calculated by using this model. The calculated results were then used in Sentaurus TCAD software to simulate a trench power MOSFET's I-V curve shift after a Xe ion has hit it. The simulation results are consistent with the related experiment's data. In the end, several factors which affect the SE-microdose effect in trench power MOSFETs are investigated by using this model. 展开更多
关键词 trench power MOSFETs SE-microdose effect charge deposition model
原文传递
Jet dispersion and deposition of charged particles in confined chambers 被引量:2
2
作者 Chao Zhu Dawei Wang Chao-Hsin Lin 《Particuology》 SCIE EI CAS CSCD 2010年第1期28-36,共9页
Dispersion and surface deposition of charged particles by gas-solids jets in confined chambers are constantly encountered in many industrial applications such as in electrostatic precipitation and dry powder coating p... Dispersion and surface deposition of charged particles by gas-solids jets in confined chambers are constantly encountered in many industrial applications such as in electrostatic precipitation and dry powder coating processes. Understanding and control of flow patterns and trajectories of charged particles are important to the optimal design and operation of such devices. In this study, modeling of flow fields and particle trajectories of dilute gas-solid two-phase flows with charged particles in confined chambers is performed. The dilute gas-solid two-phase flows are simulated by use of a hybrid Eulerian-Lagrangian approach with the one-way coupling between the gaseous phase and particle phase. The space charge distribution is included as a source term in equations of motion or Lagrangian equation of charged particles, which in turn depends on the particle trajectories that determine the space charge distribution. Our modeling predictions suggested that the electrostatic charge plays a significant role in particle radial dispersion. Effect of voltage has limited influence on particle trajectories however it can have a big impact on the residence time. Cone angle has a significant effect on the structure of flow field. For cone with a larger cone angle (typically over 15°), there will be a flow separation along the side wall near the flow entrance region. By comparing with the conical chamber, the cylindrical chamber has a big vortex and three smaller vortexes in the lower part of the chamber, which would complicate the particle dispersion with or without the coupling of charging. 展开更多
关键词 charged particle deposition Confined chamber Electric field Jet dispersion
原文传递
Penetration performance of W/Cu double-layer shaped charge liners 被引量:2
3
作者 Wen-Jian Dong Jin-Xu Liu +3 位作者 Xing-Wang Cheng Shu-Kui Li Qing-He Zou Wen-Qi Guo 《Rare Metals》 SCIE EI CAS CSCD 2016年第2期184-191,共8页
Two kinds of W/Cu double-layer shaped charge liner(SCL) were prepared by chemical vapor deposition(CVD) combined with electroforming technique: A SCL with W inner layer and Cu outer layer, B SCL with Cu inner lay... Two kinds of W/Cu double-layer shaped charge liner(SCL) were prepared by chemical vapor deposition(CVD) combined with electroforming technique: A SCL with W inner layer and Cu outer layer, B SCL with Cu inner layer and W outer layer. The penetration properties of A and B SCLs were researched. The results show that the two SCLs can form continuous jet and the tip velocities of A and B jets are 7.4 and 6.3 km s^(-1), respectively. The kinetic energy density(5.3 9 1011 J m-3) of A jet tip increases by 194.4 %compared with that(1.8 9 1011 J m-3) of B jet tip. B jet,however, exhibits deeper penetration depth at the same experimental conditions. The chemical component and microstructure of the area nearby the ballistic perforation were researched. Component analysis shows that both the jets are formed only from inner layer metal. Microstructure analysis shows that martensite and intermetallic form around ballistic perforation penetrated by A SCL due to the intensive interaction between W jet and steel target. The two kinds of newly formed ultrahard phases also hinder the jet from penetrating target further. As a result of relatively alleviative interaction between Cu jet and target, only solid solution rather than ultrahard phases forms around ballistic perforation penetrated by B SCL. 展开更多
关键词 Shaped charge liner Jet Penetration performance Chemical vapor deposition Electroforming technique
原文传递
Numerical study of particle motion near a charged collector 被引量:1
4
作者 Ziwen Zuo Junfeng Wang +1 位作者 Yuanping Huo Rongbin Xu 《Particuology》 SCIE EI CAS CSCD 2017年第3期103-111,共9页
The behavior of particles impacting the surface of a charged droplet involves adhesion, rebound, and submersion. In the present study, a numerical model for simulating particle impacts on charged droplets is presented... The behavior of particles impacting the surface of a charged droplet involves adhesion, rebound, and submersion. In the present study, a numerical model for simulating particle impacts on charged droplets is presented that takes into account the various impact modes. With the droplet considered as a solid boundary, the criterion for rebounding is that the particle's impact angle is 〈85°. The simulated trajecto- ries of the particles are verified by comparing with experimental data for low-velocity particles to assess the reliability of the model. For impact angles 〉85°, particles undergo three distinct modes depending on normal impact velocities. The critical velocity of adhesion/rebound and rebound/submersion is used to identify the mode that the particles are undergoing. The criteria are also verified by comparing with ana- lytical data. The results show that the impact angle of particles increases with increasing Coulomb number and decreases dramatically with increasing Stokes number, both of which lead to a high probability for particle rebound. 展开更多
关键词 Wet electrostatic scrubbing charged droplet Particle trajectories Particle deposition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部