期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Tetracycline sensitizes TiO_(2) for visible light photocatalytic degradation via ligand-to-metal charge transfer
1
作者 Caidie Qin Juanjuan Tang +1 位作者 Ruxia Qiao Sijie Lin 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第12期5218-5222,共5页
Treatment of antibiotics contaminated water remains a global environmental challenge.In this study,tetracycline(TC)was found to effectively sensitize pure TiO_(2) for visible light photocatalytic degradation via a lig... Treatment of antibiotics contaminated water remains a global environmental challenge.In this study,tetracycline(TC)was found to effectively sensitize pure TiO_(2) for visible light photocatalytic degradation via a ligand-to-metal charge transfer mechanism.The sensitization was attributed to the formation of TC-TiO_(2) complex and the overlap of the molecular orbitals of TC and the conduction band of TiO_(2).The intermediate degradation products of TC,however,did not sensitize TiO_(2),which was the reason for the low mineralization rate.Nevertheless,our results showed that the intermediate degradation products of TC had significantly reduced bactericidal effects and less induction of antibiotic-resistance genes(ARGs).This study showcases an effective treatment of antibiotics-containing wastewater using the most common photocatalyst TiO_(2) with reduced risk in the spread of ARGs. 展开更多
关键词 Ligand-to-metal charge transfer sensitization TETRACYCLINE TiO_(2) Photocatalytic degradation Antibiotic resistance gene
原文传递
Ultra-low Power CMOS Front-End Readout ASIC for Portable Digital Radiation Detector
2
作者 周云波 杨煜 +3 位作者 单悦尔 曹华锋 杨兵 于宗光 《Tsinghua Science and Technology》 SCIE EI CAS 2011年第2期157-163,共7页
An ultra-low power complementary metal-oxide-semiconductor (CMOS) front-end readout ASIC was developed for a portable digital radiation detector. The ASIC having a charge sensitive amplifier and a semi-Gaussian puls... An ultra-low power complementary metal-oxide-semiconductor (CMOS) front-end readout ASIC was developed for a portable digital radiation detector. The ASIC having a charge sensitive amplifier and a semi-Gaussian pulse-shaper was produced using the CSMC 0.5 μm DPDM process. The ENC noise of 363 e at 0 pF with a noise slope of 23 e/pF complies with the stringent low noise requirements. The peaking time was 250 ns at a 100 mV/fC conversion gain (detector capacitance is 20 pF). By operating this frontend readout ASIC in the weak inversion region, the ultra-low power dissipation is only 0.1 mW/channel (3.0 V) Simulations and test results suggest that this design gives lower power consumption than the front-end readout ASICs working in the strong inversion and is appropriate for the portable digital radiation detectors. 展开更多
关键词 charge sensitive SHAPER readout circuit weak inversion region nested feedback loop
原文传递
A 97 dB dynamic range CSA-based readout circuit with analog temperature compensation for MEMS capacitive sensors
3
作者 尹韬 张翀 +2 位作者 吴焕铭 吴其松 杨海钢 《Journal of Semiconductors》 EI CAS CSCD 2013年第11期124-131,共8页
Abstract: This paper presents a charge-sensitive-amplifier (CSA) based readout circuit for capacitive microelectro-mechanical-system (MEMS) sensors. A continuous-time (CT) readout structure using the chopper te... Abstract: This paper presents a charge-sensitive-amplifier (CSA) based readout circuit for capacitive microelectro-mechanical-system (MEMS) sensors. A continuous-time (CT) readout structure using the chopper technique is adopted to cancel the low frequency noise and improve the resolution of the readout circuits. An operational trans-conductance amplifier (OTA) structure with an auxiliary common-mode-feedback-OTA is proposed in the fully differential CSA to suppress the chopper modulation induced disturbance at the OTA input terminal. An analog temperature compensation method is proposed, which adjusts the chopper signal amplitude with temperature variation to compensate the temperature drift of the CSA readout sensitivity. The chip is designed and implemented in a 0.35μm CMOS process and is 2.1 × 2.1 mm2 in area. The measurement shows that the readout circuit achieves 0.9 aF/√H capacitive resolution, 97 dB dynamic range in 100 Hz signal bandwidth, and 0.8 mV/fF sensitivity with a temperature drift of 35 ppm/℃ after optimized compensation. 展开更多
关键词 capacitive readout circuit temperature compensation charge sensitive amplifier (CSA) MEMS sensor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部