期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Considering explosive charge shape and embedded depth in the design of concrete shelter thickness
1
作者 Yi Fan Li Chen +3 位作者 Jian Hong Runqing Yu Hengbo Xiang Qin Fang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期44-57,共14页
Cost and safety are important considerations when designing the thickness of a protective reinforced concrete shelter.The blast perforation limit(BPL)is the minimum concrete shelter thickness that resists perforation ... Cost and safety are important considerations when designing the thickness of a protective reinforced concrete shelter.The blast perforation limit(BPL)is the minimum concrete shelter thickness that resists perforation under blast loading.To investigate the influence of the depth of embedment(DOE)and length-to-diameter ratio(L/D)of an explosive charge on the BPL,the results of an explosion test using a slender explosive partially embedded in a reinforced concrete slab were used to validate a refined finite element model.This model was then applied to conduct more than 300 simulations with strictly controlled variables,obtaining the BPLs for various concrete slabs subjected to charge DOEs ranging from0 to∞and L/D values ranging from 0.89 to 6.87.The numerical results were compared with the experimental results from published literature,further verifying the reliability of the simulation.The findings indicate that for the same explosive charge mass and L/D,the greater the DOE,the larger the critical residual thickness(Rc,defined as the difference between the BPL and DOE)up to a certain constant value;for the same explosive charge mass and DOE,the greater the L/D,the smaller the Rc.Thus,corresponding DOE and shape coefficients were introduced to derive a new equation for the BPL,providing a theoretical approach to the design and safety assessment of protective structures. 展开更多
关键词 Blast resistance charge shape Embedded depth Structural design
下载PDF
The interaction between a shaped charge jet and a single moving plate
2
作者 Andreas Helte Jonas Lundgren Jonas Candle 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期1-13,共13页
Reactive armour is a very efficient add-on armour against shaped charge threats.Explosive reactive armour consists of one or several plates that are accelerated by an explosive.Similar but less violent acceleration of... Reactive armour is a very efficient add-on armour against shaped charge threats.Explosive reactive armour consists of one or several plates that are accelerated by an explosive.Similar but less violent acceleration of plates can also be achieved in a completely inert reactive armour.To be efficient against elongated jets,the motion of the plates needs to be inclined against the jet such that a sliding contact between the jet and the plates is established.This sliding contact causes a deflection and thinning of the jet.Under certain circumstances,the contact will become unstable,leading to severe disturbances on the jet.These disturbances will drastically reduce the jet penetration performance and it is therefore of interest to study the conditions that leads to an unstable contact.Previous studies on the interaction between shaped charge jets and flyer plates have shown that it is mainly the forward moving plate in an explosive reactive armour that is effective in disturbing the jet.This is usually attributed to the higher plate-to-jet mass flux ratio involved in the collision of the forward moving plate compared to the backward moving plate.For slow moving plates,as occurs in inert reactive armour,the difference in mass flux for the forward and backward moving plate is much lesser,and it is therefore of interest to study if other factors than the mass flux influences on the protection capability.In this work,experiments have been performed where a plate is accelerated along its length,interacting with a shaped charge jet that is fired at an oblique angle to the plate’s normal,either against or along the plate’s velocity.The arrangement corresponds to a jet interacting with a flyer plate from a reactive armour,with the exception that the collision velocity is the same for both types of obliquities in these experiments.The experiments show that disturbances on the jet are different in the two cases even though the collision velocities are the same.Numerical simulations of the interaction support the observation.The difference is attributed to the character of the contact pressure in the interaction region.For a backward moving plate,the maximum contact pressure is obtained at the beginning of the interaction zone and the contact pressure is therefore higher upstream than downstream of the jet while the opposite is true for a forward moving plate.A negative interface pressure gradient with respect to the jet motion results in a more stable flow than a positive,which means that the jet-plate contact is more stable for a backward moving plate than for a forward moving plate.A forward moving plate is thus more effective in disturbing the jet than a backward moving plate,not only because of the higher jet to plate mass flux ratio but also because of the character of the contact with the jet. 展开更多
关键词 Reactive armour Flyer plate shaped charge jet
下载PDF
Experimental and numerical study on the influence of shaped charge liner cavity filing on jet penetration characteristics in steel targets
3
作者 Paweł Zochowski Radosław Warchoł 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期60-74,共15页
Penetration characteristic(size and shape of penetration craters made in high hardness ARMSTAL 30PM steel) of shaped charge jets formed after detonations of modified PG-7VM warheads was analyzed in the article. Modifi... Penetration characteristic(size and shape of penetration craters made in high hardness ARMSTAL 30PM steel) of shaped charge jets formed after detonations of modified PG-7VM warheads was analyzed in the article. Modifications consisted in removing the frontal part of the grenade(fuse, ballistic cap and conductive cone) and introducing of the liner cavity filling made of polyacetal copolymer POM-C. The filings in the form of solid cones with three different heights(33%, 66% and 100% of H-the height of original PG-7VM liner) were placed inside of the hollow cone shaped charge liner. As opposed to the vast majority of previously published works(in which warhead optimization studies were focused on increasing of the depth of penetration in rolled homogeneous armor steel) the main aim of the presented modifications was to maximize the damage ratio(diameters of craters, inlet and outlet holes) of target perforated by shaped charge jet at the cost of the loss of part of the jet penetration capability. According to the best knowledge of the authors such approach to the use of the old PG-7VM warheads has not been analyzed so far. Taking into consideration high stock levels of PG-7VM warheads, and the fact that they are continuously being replaced by more efficient and more sophisticated high-explosive anti-tank warheads, it seems reasonable to look for alternate applications of the warheads withdrawn from the service. Thanks to the introduction of proposed modifications the warheads could be used by special forces or other assault units as directional mines or statically detonated cutting shaped charges as well as by combat engineers as universal charges used in various types of engineering or sapper works. The research included experimental penetration tests and their numerical reproduction in the LS-Dyna software with the simulation methodology defined and validated in previous works of the authors.Small differences(average error = 10-20%) were identified between the experimental and numerical results(dimensions of craters made in steel targets were compared) what confirmed the reliability of the modelling methodology and enabled its use for further optimization of the shapes of fillings. Within the analyzed variants of warheads modifications maximum diameters of penetration craters were obtained for the filling of the height of h = 2/3H. The diameters of holes in individual steel plates were increased by 164%, 70%, 65%(for the first, second and third plate, respectively) in relation to the variant without filling. The results of the study indicated that with the use of different materials of fillings and their various heights it is possible to control the shape of penetration craters pierced in the steel targets. 展开更多
关键词 shaped charge jet PG-7 grenade Armor steel target Finite element modeling Penetration process
下载PDF
Jet formation and penetration performance of a double-layer charge liner with chemically-deposited tungsten as the inner liner
4
作者 Bihui Hong Wenbin Li +2 位作者 Yiming Li Zhiwei Guo Binyou Yan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期374-385,共12页
This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double... This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double-layer charge liners were fabricated by using CVD to deposit tungsten layers on the inner surfaces of pure T2 copper liners.The microstructures of the tungsten layers were analyzed using a scanning electron microscope(SEM).The feasibility analysis was carried out by pulsed X-rays,slug-retrieval test and static penetration tests.The shaped charge jet forming and penetration law of inner tungsten-coated double-layer liner were studied by numerical simulation method.The results showed that the double-layer liners could form well-shaped jets.The errors between the X-ray test results and the numerical results were within 11.07%.A slug-retrieval test was found that the retrieved slug was similar to a numerically simulated slug.Compared with the traditional pure copper shaped charge jet,the penetration depth of the double-layer shaped charge liner increased by 11.4% and>10.8% respectively.In summary,the test results are good,and the numerical simulation is in good agreement with the test,which verified the feasibility of using the CVD method to fabricate double-layer charge liners with a high-density and high-strength refractory metal as the inner liner. 展开更多
关键词 shaped charge Chemical vapor deposition TUNGSTEN Double-layer charge liner X-ray PENETRATION
下载PDF
Penetration and internal blast behavior of reactive liner enhanced shaped charge against concrete space 被引量:6
5
作者 Hao Zhang Yuan-feng Zheng +3 位作者 Qing-bo Yu Chao Ge Cheng-hai Su Hai-fu Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第6期952-962,共11页
Penetration and internal blast behavior of reactive liner enhanced shaped charge against concrete space were investigated through experiments and simulations.The volume of the enclosed concrete space is about 15 m^(3)... Penetration and internal blast behavior of reactive liner enhanced shaped charge against concrete space were investigated through experiments and simulations.The volume of the enclosed concrete space is about 15 m^(3).The reactive liner enhanced shaped charge utilizes reactive copper double-layered liner,which is composed of an inner copper liner and an outer reactive liner,while the reactive material liner is fabricated by PTFE/Al(Polytetrafluoroethylene/Aluminum)powders through cold-pressing and sintering.Static explosion experiments show that,compared with the shaped charge which utilizes copper liner,the penetration cavity diameter and spalling area of concrete by the novel shaped charge were enlarged to 2 times and 4 times,respectively.Meanwhile,the following reactive material had blast effect and produced significant overpressure inside the concrete closed space.Theoretical analysis indicates concrete strength and detonation pressure of reactive material both affect the penetration cavity diameter.To the blast behavior of reactive material inside the concrete space,developing TNT equivalence model and simulated on AUTODYN-3 D for analysis.Simulation results reproduced propagation process of the shock wave in concrete space,and revealed multi-peaks phenomenon of overpressure-time curves.Furthermore,the empirical relationship between the peak overpressure and relative distance for the shock wave of reactive material was proposed. 展开更多
关键词 shaped charge PENETRATION BLAST Concrete Numerical simulation
下载PDF
Reaction characteristic of PTFE/Al/Cu/Pb composites and application in shaped charge liner 被引量:3
6
作者 Huan-Guo Guo Yuan-feng Zheng +3 位作者 Suo He Qing-Bo Yu Chao Ge Hai-fu Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第9期1578-1588,共11页
In this paper, the reaction characteristic and its application in shaped charge warhead of a novel reactive material, which introduced copper(Cu) and plumbum(Pb) into traditional polytetrafluoroethylene/aluminum(PTFE/... In this paper, the reaction characteristic and its application in shaped charge warhead of a novel reactive material, which introduced copper(Cu) and plumbum(Pb) into traditional polytetrafluoroethylene/aluminum(PTFE/Al), are studied. The thermal analysis and chemical reaction behavior of the PTFE/Al/Cu/Pb mixture are investigated by Differential Scanning Calorimetry(DSC),Thermo-gravimetry(TG), and Xray Diffraction(XRD) techniques. Then, the shaped charge liners with PTFE/Al/Cu/Pb reactive materials are fabricated, and the X-ray experiments show that they could form reactive jets with excellent performance under the detonation effects of the shaped charge. Based on that, the penetration experiments of shaped charge with PTFE/Al/Cu/Pb reactive liner against steel plates are carried out, and the results demonstrate that the PTFE/Al/Cu/Pb reactive jets could produce a deeper penetration depth compared to the traditional PTFE/Al reactive jets. Meanwhile, the PTFE/Al/Cu/Pb reactive jets also show significant inner-blast effects, leading to dramatically cracking or fragmentation behavior of the penetrated steel plates. This new PTFE/Al/Cu/Pb reactive liner shaped charge presents enhanced penetration behavior for steel targets that incorporates the penetration capability of a high-density and ductility jet, and the chemical energy release of PTFE-matrix reactive materials. 展开更多
关键词 Reactive materials shaped charge Reactive liner Jet formation Penetration behavior
下载PDF
Influence of a liquid-filled compartment structure on the incoming shaped charge jet stability 被引量:2
7
作者 X.D.Zu Z.X.Huang +2 位作者 Z.W.Guan X.C.Yin Y.M.Zheng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期571-582,共12页
Liquid-filled compartment structure consists of a bulk steel plate with matrix blind holes which are filled with liquid and a steel front plate to seal up the liquid with rings and bolts.The liquid-filled compartment ... Liquid-filled compartment structure consists of a bulk steel plate with matrix blind holes which are filled with liquid and a steel front plate to seal up the liquid with rings and bolts.The liquid-filled compartment structure can resist the shaped charge warhead effectively.This paper presents experimental and theoretical investigations of the penetration ability of the residual shaped charge jet emerging from the liquid-filled compartment structure after the penetration process at different impact angles.On the basis of shock wave propagation theory,the influence of the liquid-filled compartment structure on jet stability is analysed.The interferences of the liquid backflow caused by a reflected shock wave and a back plate on jet stability under different impact angles are also examined.In addition,the range of the disturbed velocity segments of the jet at different impact angles and the penetration ability of the residual jet are obtained.A theoretical model is validated against the experimental penetration depths. 展开更多
关键词 Compartment structure shaped charge jet Shock wave DISTURBANCE STABILITY
下载PDF
Research on the Application of Explosive Network in the Shaped Charge Warhead 被引量:1
8
作者 徐立新 刘建荣 +3 位作者 赵广波 于成大 李昕 张国伟 《Defence Technology(防务技术)》 SCIE EI CAS 2011年第4期204-209,共6页
With respect to the problems of that the shaped charge warhead currently uses a cover method to improve the penetration power, a method using an explosive network technology as the detonation mode of shaped charge war... With respect to the problems of that the shaped charge warhead currently uses a cover method to improve the penetration power, a method using an explosive network technology as the detonation mode of shaped charge warhead is proposed. In the context of some shaped charge warhead, a synchronous explosive network prototype is designed according to some charge structure parameters, such as the liner and main grain. From the performance comparison test, it can be known that the explosive network not only stably detonates, but also largely improves the penetration power and stability. Experimental results show that explosive network technology is an effective method for improving the penetration power. The results lay a solid foundation for the engineering application of the technology in the shaped charge warhead. 展开更多
关键词 explosive mechanics explosive network shaped charge LINER WARHEAD
下载PDF
Study on liquid-filled structure target with shaped charge vertical penetration 被引量:1
9
作者 Min Guo Xu-dong Zu +1 位作者 Xiao-jun Shen Zheng-xiang Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第6期861-867,共7页
Based on the characteristic expanded hole of a shaped charge jet(SCJ) for target penetration and the reflow characteristics of liquids,the liquid-filled structure of a target disturbs the stability of the SCJ acquired... Based on the characteristic expanded hole of a shaped charge jet(SCJ) for target penetration and the reflow characteristics of liquids,the liquid-filled structure of a target disturbs the stability of the SCJ acquired in two independent parts.The interference jet speed interval,the escape jet speed interval,and the surplus depth are calculated on the basis of the virtual origin theory.The experimental results,including the velocity of the escaped jet tip and the surplus depth of penetration,are consistent with the theoretical results.Experiments show that the theory can describe the interaction process of the target with a shaped charge jet. 展开更多
关键词 shaped charge Liquid-filled structure target Disturbed jet Escape jet
下载PDF
Investigate the effects of magnetic fields on the penetration ability of a shaped charge jet at different standoffs
10
作者 Bin Ma Zheng-xiang Huang +3 位作者 Zhong-wei Guan Xin Jia Xu-dong Zu Qiang-qiang Xiao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第5期1722-1730,共9页
The influence of a magnetic field on the stability of a shaped charge jet is experimentally investigated at standoffs of 490,650 and 800 mm.The experimental results without and with the magnetic field are compared in ... The influence of a magnetic field on the stability of a shaped charge jet is experimentally investigated at standoffs of 490,650 and 800 mm.The experimental results without and with the magnetic field are compared in terms of the shaped charge jet form,stability and penetration ability.A theoretical model based on one-dimension fluid dynamics is then developed to assess the depth of penetration of the shaped charge at those three standoffs and magnetic conditions.The results show that the penetration capability can be enhanced in more than 70%by the magnetic field.The theoretical calculations are compared with the experimental results with reasonably good correlation.In addition,the parameters introduced in the theory are discussed together with the experiments at three standoffs studied. 展开更多
关键词 shaped charge jet STABILITY PENETRATION Magnetic field Coupling mechanism
下载PDF
Influence of shaped charge structure parameters on the formation of linear explosively formed projectiles
11
作者 Tian-bao Ma Jing Liu Qi Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第10期1863-1874,共12页
The research of LEFP(linear explosive forming projectile)is of great value to the development of new warhead due to its excellent performance.To further improve the damage ability of the shaped charge warhead,a specia... The research of LEFP(linear explosive forming projectile)is of great value to the development of new warhead due to its excellent performance.To further improve the damage ability of the shaped charge warhead,a special shell overhanging structure was designed to increase the charge based on the traditional spherical charge,in which case the crushing energy of LEFP could be guaranteed.LS-DYNA was used to simulate different charge structures obtained by changing the number of detonation points,the length of shell platform,the radius of curvature and the thickness of liner.The RSM(response surface model)between the molding parameters of LEFP and the structural parameters of charge was established.Based on RSM model,the structure of shaped charge was optimized by using multi-objective genetic algorithm.Meanwhile,the formation process of jet was analyzed by pulsed X-ray photography.The results show that the velocity,length-diameter ratio and specific kinetic energy of the LEFP were closely related to the structural parameters of the shaped charge.After the optimization of charge structure,the forming effect and penetration ability of LEPP had been significantly improved.The experimental data of jet velocity and length were consistent with the numerical results,which verifies the reliability of the numerical results. 展开更多
关键词 LEFP Numerical simulation shaped charge Structure optimization
下载PDF
Structure Design of Shaped Charge for Requirements of Concrete Crater Diameter
12
作者 郭坚 何勇 +2 位作者 肖强强 黄正祥 刘蓓蓓 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第6期681-686,共6页
When shaped charge penetrats into concrete,crater diameter must meet certain requirements.By using theories of shaped jet formation and crater diameter growth during jet penetrating concrete,we revealed the thresholds... When shaped charge penetrats into concrete,crater diameter must meet certain requirements.By using theories of shaped jet formation and crater diameter growth during jet penetrating concrete,we revealed the thresholds of the velocity and diameter of jet head,and therefore obtained the related structure parameters of top liner,so that shaped charge structure was developed.We built a?60mm copper liner and a?142mm Ti-alloy liner which followed the rules of 0.6cal and 0.7cal in-crater diameter.respectively.X-ray experiment and penetration test results showed that the parameters of jet head were consistent with the results of theoretical analysis.The in-crater diameter of?60mm shaped charge reached 36 mm,and the?142mm one reached 100 mm.They both met the design requirements. 展开更多
关键词 shaped charge crater diameter structure design
下载PDF
Overdriven Detonation and Its Application in Shaped Charges
13
作者 Tariq Hussain Yan Liu Fenglei Huang 《Journal of Beijing Institute of Technology》 EI CAS 2017年第1期9-15,共7页
Overdriven detonation(ODD)in high explosives can be generated by Mach reflection of conical detonation waves propagating quasi-steadily in a co-axial double layer cylindrical charge.The inner core of the charge consis... Overdriven detonation(ODD)in high explosives can be generated by Mach reflection of conical detonation waves propagating quasi-steadily in a co-axial double layer cylindrical charge.The inner core of the charge consists of lower detonation velocity explosive with higher detonation velocity explosive for the outer core.The calculated pressures and detonation velocities in the ODD regime are compared with available results in the literature.The application of this technique to design a double layer shaped charge(DLSC)is numerically studied.It was discovered that the use of lower density-lower detonation velocity explosive in the inner core of DLSC can also yield similar results to those obtained with high density lower detonation velocity explosive.By analyzing previous experimental results and comparing with present simulations,it is demonstrated that ordinary shaped charges have some advantages over DLSC under certain conditions. 展开更多
关键词 overdriven detonation double-layer shaped charge jet formation
下载PDF
Linear Shaped Charge Cutting Property and Charge Cutting Mechanism of Mg-Gd-Y-Zn Alloy
14
作者 WANG Yanbo ZHOU Haitao +4 位作者 XIAO Lü HOU Xiangwu SUN Xin CHEN Ge DONG Xiwang 《上海航天(中英文)》 CSCD 2022年第1期196-204,共9页
The linear shaped charge cutting technology is an effective technology for aircraft separation.It can separate invalid components from aircrafts timely to achieve light-weight.Magnesium alloy is the lightest metal mat... The linear shaped charge cutting technology is an effective technology for aircraft separation.It can separate invalid components from aircrafts timely to achieve light-weight.Magnesium alloy is the lightest metal material,and can be used to cast effective light-weight components of an aircraft construction.However,the application study of the linear shaped charge cutting technology on magnesium alloy components is basically blank.In response to the demand for the linear separation of magnesium alloys,the Mg-12Gd-0.5Y-0.4Zn alloy is selected to carry out the target shaped charge cutting test.The effects of the shaped charge line density,cutting thickness,and mechanical properties on the cutting performance of the alloy are studied.The shaped charge cutting mechanism is analyzed through the notch structure.The results show that the linear shaped charge cutting performance is significantly affected by the penetration and the collapse.The higher the linear density is,the stronger the ability of the linear shaped charge cutter is,and the greater the penetration depth is,which is advantageous.However,the target structure will be damaged when it is too large(e.g.,4.5 g·m^(-1)).Within 12 mm,when the cutting thickness of the target increases,the penetration depth increases.The lower the tensile strength is,the greater the penetration depth is,and the more conducive the penetration depth to the shaped charge cutting is.When the elongation(EL)increases to 12%,the collapse of the target is incomplete and the target cannot be separated.When the tensile strength of the Mg-Gd-Y-Zn alloy is less than 350 MPa,the EL is less than 6.5%,the cutting thickness is less than 12 mm,and the linear shaped charge cutting of the magnesium alloy can be achieved stably. 展开更多
关键词 shaped charge cutting linear shaped charge cutting mechanism magnesium alloy mechanical properties PENETRATION
下载PDF
爆破型和聚能型装药水下爆炸载荷特性
15
作者 张之凡 李海龙 +3 位作者 张竞元 王龙侃 张桂勇 宗智 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第2期302-315,共14页
Blasting and shaped charges are the main forms of underwater weapons,and their near-field underwater explosions(UNDEX)can severely damage structures.Therefore,it is of great importance to study underwater explosive lo... Blasting and shaped charges are the main forms of underwater weapons,and their near-field underwater explosions(UNDEX)can severely damage structures.Therefore,it is of great importance to study underwater explosive load characteristics of different forms of charges.The full physical process of a typical underwater explosion of a sphere/column blasting charge and a shaped charge was simulated using the Eulerian method.The loading characteristics of the underwater blast shock wave and bubble,as well as the projectile,were studied.The results show that the shock wave loads of spherical,cylindrical,and polygonal charges propagate outward in spherical,ellipsoidal–spherical and ellipsoidal–spherical wavefronts,respectively.When the shock wave reaches 16 times the distance-to-diameter ratio,its surface is approximately spherical.In addition,in the shaped charge underwater explosion,the shaped charge liner cover absorbs 30°–90°of the shock wave energy and some of the bubble energy to form a high-speed shaped penetrator.Spherical,ellipsoidal,and ellipsoidal bubbles are generated by underwater explosions of spherical,cylindrical,and shaped charges,respectively.The obtained results provide a reference for evaluating the power of underwater weapons. 展开更多
关键词 Blasting charge shaped charge Load characteristics Shock wave BUBBLE
下载PDF
Simulation and Experimental Investigation of Jetting Penetrator Charge at Large Stand-off Distance 被引量:10
16
作者 FU Jianping CHEN Zhigang +3 位作者 HOU Xiucheng LI Shuqiang LI Shoucang WANG Jingwen 《Defence Technology(防务技术)》 SCIE EI CAS 2013年第2期117-124,共8页
In order to study and apply the penetration performance of jetting penetrator charge at long stand-off distance, three jetting penetrator charges(JPC), including spherical cone liner, truncated wide-angle liner and sp... In order to study and apply the penetration performance of jetting penetrator charge at long stand-off distance, three jetting penetrator charges(JPC), including spherical cone liner, truncated wide-angle liner and spherical segment liner, are designed. The numerical simulation analysis of the formation, elongation and penetration processes of rod-like jet is conducted by using LS-DYNA software. And the penetrating test is carried out at long stand-off distance. The test results show that the rod-like jet formed by the optimized spherical segment liner can pierce through a 90mm thick 45# steel target at 20 charge diameters(CD) stand-off distance when the charge detonation mode is a central point initiation, and the penetration depth can be up to 1.6CD. It is concluded that, at 20 CD stand-off distance, the penetration performance of JPC with spherical segment liner is the best, that of truncated wide-angle liner takes second place, and that of spherical cone liner is the worst. 展开更多
关键词 mechanics explosion shaped charge JET LINER PENETRATION numerical simulation
下载PDF
Analysis on damage characteristics and detonation performance of solid rocket engine charge subjected to jet
17
作者 Song-lin Pang Xiong Chen +2 位作者 Jin-sheng Xu Ge-tu Zhaori Hong-Ying Du 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第9期1552-1562,共11页
To further explore the damage characteristics and impact response of the shaped charge to the solid rocket engine(SRE) in storage or transportation, protective armor was designed and the shelled charges model(SCM)/SRE... To further explore the damage characteristics and impact response of the shaped charge to the solid rocket engine(SRE) in storage or transportation, protective armor was designed and the shelled charges model(SCM)/SRE with protective armor impacting by shaped charge tests were conducted. Air overpressures at 5 locations and axial acceleration caused by the explosion were measured, and the experimental results were compared with two air overpressure curves of propellant detonation obtained by related scholars. Afterwards, the finite element software AUTODYN was used to simulate the SCM impacted process and SRE detonation results. The penetration process and the formation cause of damage were analyzed. The detonation performance of TNT, reference propellant, and the propellant used in this experiment was compared. The axial acceleration caused by the explosion was also analyzed.By comprehensive comparison, the energy released by the detonation of this propellant is larger, and the HMX or Al particles contained in this propellant are more than the reference propellant, with a TNT equivalent of 1.168-1.196. Finally, advanced protection armor suggestions were proposed based on the theory of woven fabric rubber composite armor(WFRCA). 展开更多
关键词 Explosion mechanics shaped charge jet Damage characteristics Detonation performance of propellant
下载PDF
Mesoscale study on explosion-induced formation and thermochemical response of PTFE/Al granular jet 被引量:2
18
作者 Yuan-feng Zheng Zhi-jian Zheng +2 位作者 Guan-cheng Lu Hai-fu Wang Huan-guo Guo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期112-125,共14页
The dynamic formation,shock-induced inhomogeneous temperature rise and corresponding chemical reaction behaviors of PTFE/Al reactive liner shaped charge jet(RLSCJ)are investigated by the combination of mesoscale simul... The dynamic formation,shock-induced inhomogeneous temperature rise and corresponding chemical reaction behaviors of PTFE/Al reactive liner shaped charge jet(RLSCJ)are investigated by the combination of mesoscale simulation,reaction kinetics and chemical energy release test.A two-dimensional granular model is developed with the randomly normal distribution of aluminum particle sizes and the particle delivery program.Then,the granular model is employed to study the shock-induced thermal behavior during the formation and extension processes of RLSCJ,as well as the temperature history curves of aluminum particles.The simulation results visualize the motion and temperature responses of the RLSCJ at the grain level,and further indicate that the aluminum particles are more likely to gather in the last two-thirds of the jet along its axis.Further analysis shows that the shock,collision,friction and deformation behaviors are all responsible for the steep temperature rise of the reactive jet.In addition,a shock-induced chemical reaction extent model of RLSCJ is built based on the combination of the Arrhenius model and the Avrami-Erofeev kinetic model,by which the chemical reaction growth behavior during the formation and extension stages is described quantitatively.The model indicates the reaction extent highly corresponds to the aluminum particle temperature history at the formation and extension stages.At last,a manometry chamber and the corresponding energy release model are used together to study the macroscopic chemical energy release characteristics of RLSCJ,by which the reaction extent model is verified. 展开更多
关键词 Reactive materials shaped charge Mesoscale simulation FORMATION Thermochemical response
下载PDF
Reactive jet density distribution effect on its penetration behavior
19
作者 Huan-guo Guo Cheng-hai Su +3 位作者 Yi-qiang Cai Suo He Qing-bo Yu Haifu Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期190-202,共13页
In this paper,the penetration mechanism of reactive jet with non-uniform density distribution is studied.The simulations show that the density deficit occurs in the whole reactive jet,and the density increases from th... In this paper,the penetration mechanism of reactive jet with non-uniform density distribution is studied.The simulations show that the density deficit occurs in the whole reactive jet,and the density increases from the jet tip to tail.The density of jet tip is approximately 1.5 g/cm3,which is lower than that of the reactive liner materials.The X-ray experiments show similar results with the simulations.The density decreasing effect of jet tip has a significant influence on the penetration behavior when the reactive jet impacts steel plate.According to the simulation results,this paper assumes that the density gradient in the jet section has linear distribution.Then,the deflagration pressure generated by each jet element at the bottom of crater is introduced into the Bernoulli equation.Based on the virtual origin model and Szendrei-Held equation,the analytical models for penetration depth and radial cratering of reactive jet with the density reduction are obtained.Moreover,to further prove the validity of analytical models,the penetration experiments of the reactive liner shaped charge against steel plate under different standoffs are carried out.There is a convergence between the analytical crater profiles and experimental results when reactive jets penetrate steel plates under different standoffs,especially at standoff of 1.5 and 2.0charge diameters. 展开更多
关键词 shaped charge Reactive jet Density distribution Jet penetration Virtual origin
下载PDF
Response of masonry systems against blast loading
20
作者 Eid Badshah Amjad Naseer +1 位作者 Mohammad Ashraf Tauseef Ahmad 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1326-1337,共12页
In this paper eight successive experimental blast tests with an increasing TNT equivalent charge weights ranging from 0.56 kg to 17.78 kg were conducted on unreinforced,ferrocemented overlay masonry and confined mason... In this paper eight successive experimental blast tests with an increasing TNT equivalent charge weights ranging from 0.56 kg to 17.78 kg were conducted on unreinforced,ferrocemented overlay masonry and confined masonry walls.The pressure-time history caused by the blast was recorded by pressure sensors installed on the test specimen.The resulting damage pattern was observed during each test.Weak zones in the three systems of masonry were identified.Scaled distances for different damage levels in the three masonry systems were experimentally obtained.The results provide a basis for determining the response of each masonry system against blast loading.Consequently,efficiency of ferrocemented overlay masonry and confined masonry was found established in mitigation against blast loads. 展开更多
关键词 Peak over pressure Pressure sensor Composition-B TNT Scaled distance Stand-off distance charge shape CONFINED Unreinforced Ferrocemented
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部