A novel optically controlled SiCGe/SiC heterojunction transistor with charge-compensation technique has been simulated by using commercial simulator. This paper discusses the electric field distribution, spectral resp...A novel optically controlled SiCGe/SiC heterojunction transistor with charge-compensation technique has been simulated by using commercial simulator. This paper discusses the electric field distribution, spectral response and transient response of the device. Due to utilizing p-SiCGe charge-compensation layer, the responsivity increases nearly two times and breakdown voltage increases 33%. The switching characteristic illustrates that the device is latch-free and its fall time is much longer than the rise time. With an increase of the light power density and wavelength, the rise time and fall time will become shorter and longer, respectively. In terms of carrier lifetime, a compromise should be made between the responsivity and switching speed, the ratio of them reaches maximum value when the minority carrier lifetime equals 90 ns.展开更多
For pseudocapacitive electrode materials(PseEMs),despite much progress having been made in achieving both high power density and high energy density,a general strategy to guide the enhancement of intrinsic capacitive ...For pseudocapacitive electrode materials(PseEMs),despite much progress having been made in achieving both high power density and high energy density,a general strategy to guide the enhancement of intrinsic capacitive properties of PseEMs remains lacking.Here,we demonstrate a universal chargecompensating strategy to improve the charge-storage capability of PseEMs intrinsically:ⅰ) in the electrolyte with anion as charge carriers(such as OH-),reducing the multivalent cations of PseEMs into lower valences could create more reversible low-to-high valence redox cou ples to promote the intercalation of the anions;ⅱ) in the electrolytes with cation as charge carriers(such as H^(+),Li^(+),Na^(+)),oxidizing the multivalent cations of PseEMs into higher valences could introduce more reversible high-to-low valence redox couples to promote the intercalation of the cations.And we demonstrated that the improved intrinsic charge-storage capability for PseEMs originates from the increased Faradaic charge storage sites.展开更多
The quantitative relationship between the spin Hamiltonian parameters (D, g|| Ag) and the crystal structure parameters for the Cr3+-Vzη tetragonal defect centre in a Cr3+ :KZnF3 crystal is established by using...The quantitative relationship between the spin Hamiltonian parameters (D, g|| Ag) and the crystal structure parameters for the Cr3+-Vzη tetragonal defect centre in a Cr3+ :KZnF3 crystal is established by using the superposition model. On the above basis, the local structure distortion and the spin Hamiltonian parameter for the Cr3+-Vzn tetragonal defect centre in the KZnF3 crystal are systematically investigated using the complete diagonalization method. It is found that the Vzn vacancy and the differences in mass, radius and charge between the Cr3+ and the Zn2+ ions induce the local lattice distortion of the Cr3+ centre ions in the KZnF3 crystal. The local lattice distortion is shown to give rise to the tetragonal crystal field, which in turn results in the tetragonal zero-field splitting parameter D and the anisotropic g factor Ag. We find that the ligand F- ion along I001] and the other five F- ions move towards the central Cr3+ by distances of A1 = 0.0121 nm and A2 = 0.0026 nm, respectively. Our approach takes into account the spin-rbit interaction as well as the spin-spin, spin other-orbit, and orbit-rbit interactions omitted in the previous studies. It is found that for the Cr3+ ions in the Cr3+:KZnF3 crystal, although the spin-rbit mechanism is the most important one, the contribution to the spin Hamiltonian parameters from the other three mechanisms, including spin- spin, spin-other-orbit, and orbit-orbit magnetic interactions, is appreciable and should not be omitted, especially for the zero-field splitting (ZFS) parameter D.展开更多
基金Project supported by National Natural Science Foundation of China (Grant No. 60876050)Special Scientific Research Project of Shaanxi Provincial Departments of Education,China (Grant No. 08JK367)the Research Fund for Excellent Doctor DegreeThesis of Xi’an University of Technology,China
文摘A novel optically controlled SiCGe/SiC heterojunction transistor with charge-compensation technique has been simulated by using commercial simulator. This paper discusses the electric field distribution, spectral response and transient response of the device. Due to utilizing p-SiCGe charge-compensation layer, the responsivity increases nearly two times and breakdown voltage increases 33%. The switching characteristic illustrates that the device is latch-free and its fall time is much longer than the rise time. With an increase of the light power density and wavelength, the rise time and fall time will become shorter and longer, respectively. In terms of carrier lifetime, a compromise should be made between the responsivity and switching speed, the ratio of them reaches maximum value when the minority carrier lifetime equals 90 ns.
基金supported by the National Natural Science Foundation of China(51972146,52072150)。
文摘For pseudocapacitive electrode materials(PseEMs),despite much progress having been made in achieving both high power density and high energy density,a general strategy to guide the enhancement of intrinsic capacitive properties of PseEMs remains lacking.Here,we demonstrate a universal chargecompensating strategy to improve the charge-storage capability of PseEMs intrinsically:ⅰ) in the electrolyte with anion as charge carriers(such as OH-),reducing the multivalent cations of PseEMs into lower valences could create more reversible low-to-high valence redox cou ples to promote the intercalation of the anions;ⅱ) in the electrolytes with cation as charge carriers(such as H^(+),Li^(+),Na^(+)),oxidizing the multivalent cations of PseEMs into higher valences could introduce more reversible high-to-low valence redox couples to promote the intercalation of the cations.And we demonstrated that the improved intrinsic charge-storage capability for PseEMs originates from the increased Faradaic charge storage sites.
基金Projects supported by the Natural Science Foundation of Shaanxi Province,China (Grant No.2010JM1015)the Special Scientific Program of the Education Department of Shaanxi Province,China (Grant No.11JK0537)the Baoji University of Arts and Sciences Key Research,China (Grant No.ZK0842)
文摘The quantitative relationship between the spin Hamiltonian parameters (D, g|| Ag) and the crystal structure parameters for the Cr3+-Vzη tetragonal defect centre in a Cr3+ :KZnF3 crystal is established by using the superposition model. On the above basis, the local structure distortion and the spin Hamiltonian parameter for the Cr3+-Vzn tetragonal defect centre in the KZnF3 crystal are systematically investigated using the complete diagonalization method. It is found that the Vzn vacancy and the differences in mass, radius and charge between the Cr3+ and the Zn2+ ions induce the local lattice distortion of the Cr3+ centre ions in the KZnF3 crystal. The local lattice distortion is shown to give rise to the tetragonal crystal field, which in turn results in the tetragonal zero-field splitting parameter D and the anisotropic g factor Ag. We find that the ligand F- ion along I001] and the other five F- ions move towards the central Cr3+ by distances of A1 = 0.0121 nm and A2 = 0.0026 nm, respectively. Our approach takes into account the spin-rbit interaction as well as the spin-spin, spin other-orbit, and orbit-rbit interactions omitted in the previous studies. It is found that for the Cr3+ ions in the Cr3+:KZnF3 crystal, although the spin-rbit mechanism is the most important one, the contribution to the spin Hamiltonian parameters from the other three mechanisms, including spin- spin, spin-other-orbit, and orbit-orbit magnetic interactions, is appreciable and should not be omitted, especially for the zero-field splitting (ZFS) parameter D.