The behaviors of f electrons are crucial for understanding the rich phase diagrams and ground-state properties of heavy fermion(HF)systems.The complicated interactions between f electrons and conduction electrons larg...The behaviors of f electrons are crucial for understanding the rich phase diagrams and ground-state properties of heavy fermion(HF)systems.The complicated interactions between f electrons and conduction electrons largely enrich the basic properties of HF compounds.Here the electronic structure,especially the f-electron character,of the charge-density-wave(CDW)Kondo lattice compound CeTe_(3)has been studied by high-resolution angle-resolved photoemission spectroscopy.A weakly dispersive quasiparticle band near the Fermi level has been observed directly,indicating hybridization between f electrons and conduction electrons.Temperature-dependent measurements confirm the localized to itinerant transition of f electrons as the temperature decreases.Furthermore,an energy gap formed by one conduction band at low temperature is gradually closed with increasing temperature,which probably originates from the CDW transition at extremely high temperature.Additionally,orbital information of different electrons has also been acquired with different photon energies and polarizations,which indicates the anisotropy and diverse symmetries of the orbitals.Our results may help understand the complicated f-electron behaviors when considering its interaction with other electrons/photons in CeTe_(3)and other related compounds.展开更多
Transmission electron microscopy (TEM) study of SrPt2As2 reveals two incommensurate modulations appearing in the charge-density-wave (CDW) state below TCDW ≈ 470 K. These two structural modulations can be well ex...Transmission electron microscopy (TEM) study of SrPt2As2 reveals two incommensurate modulations appearing in the charge-density-wave (CDW) state below TCDW ≈ 470 K. These two structural modulations can be well explained in terms of condensations of two-coupled phonon modes with wave vectors of q1=0.62a* on the a*-b* plane and q2 = 0.23a* on the a*-c* plane. The atomic displacements occur along the b-axis direction for q1 and along the c-axis direction for q2, respectively. Moreover, the correlation between ql and q2 can be generally written as q1 = (q2 + a*)/2 in the CDW state, suggesting the presence of essential coupling between q1 and q2. A small fraction of Ir doping on the Pt site in Sr(Pt1-xIrx)2As2 (x ≤ 0.06) could moderately change these CDW modulations and also affect their superconductivities.展开更多
Single crystals of RSeTe2 (R =La, Ce, Pr, Nd) are synthesized using LiC1/RbCI flux. Transport and magnetic properties in the directions parallel and perpendicular to the a-c plane are investigated. We find that the ...Single crystals of RSeTe2 (R =La, Ce, Pr, Nd) are synthesized using LiC1/RbCI flux. Transport and magnetic properties in the directions parallel and perpendicular to the a-c plane are investigated. We find that the resistivity anisotropy P⊥/P∥ lies in the range 486-615 for different compounds at 2K, indicating the highly two-dimensional character. In both the orientations, the charge-density-wave transitions start near Tcow = 284(3)K, 316(3)K, 359(3)K for NdSeTe2, PrSeTe2, CeSeTe2, respectively, with a considerable increase in dc resistivity. While for LaSeTe2, no obvious resistivity anomaly is observed up to 380K. The value of TCDW increases monotonically with the increasing lattice parameters. Below TCDW, slight anomalies can be observed in NdSeTe2, PrSeTe2 and CeSeTe2 with onset temperature at 193(3)K, 161(3)K, 108(3)K, respectively, decreasing as lattice parameters increase. Magnetic susceptibility measurements show that the valence state of rare earth ions are trivalenee in these compounds. Antiferromagnetie-type magnetic order is formed in CeSeTe2 at 2.1 K, while no magnetic transition is observed in PrSeTe2 and NdSeTe2 down to 1.8 K.展开更多
We perform 31p nuclear magnetic resonance (NMR) measurements on a single crystal of RuP. The anomalies in resistivity at about TA = 270 K and TB = 330 K indicate that two phase transitions occur. The line shape of a...We perform 31p nuclear magnetic resonance (NMR) measurements on a single crystal of RuP. The anomalies in resistivity at about TA = 270 K and TB = 330 K indicate that two phase transitions occur. The line shape of alp NMR spectra in different temperature ranges is attributed to the charge density distribution. The Knight shift and spin-lattice relaxation rate 1/T1T are measured from 1OK to 30OK. At about TA = 270K, they both decrease abruptly with the temperature reduction, which reveals the gap-opening behavior. Well below TA, they act like the case of normal metal. Charge-density-wave phase transition is proposed to interpret the transition occurring at about TA.展开更多
It was found that selenium doping can suppress the charge-density-wave(CDW) order and induce bulk superconductivity in ZrTe3. The observed superconducting dome suggests the existence of a CDW quantum critical point...It was found that selenium doping can suppress the charge-density-wave(CDW) order and induce bulk superconductivity in ZrTe3. The observed superconducting dome suggests the existence of a CDW quantum critical point(QCP) in ZrTe3-xSex near x ≈ 0.04. To elucidate the superconducting state near the CDW QCP, we measure the thermal conductivity of two ZrTe(3-x)Sex single crystals(x = 0.044 and 0.051) down to 80 m K. For both samples, the residual linear term κ0/T at zero field is negligible, which is a clear evidence for nodeless superconducting gap. Furthermore, the field dependence of κ0/T manifests a multigap behavior. These results demonstrate multiple nodeless superconducting gaps in ZrTe(3-x)Sex,which indicates conventional superconductivity despite of the existence of a CDW QCP.展开更多
Nearly single-phase and polycrystalline charge-density-wave compound K0.3MoO3 have been prepared by using a simple method. In this work, K2CO3 and MoOs were used as starting materials and reacted by hot isostatic pres...Nearly single-phase and polycrystalline charge-density-wave compound K0.3MoO3 have been prepared by using a simple method. In this work, K2CO3 and MoOs were used as starting materials and reacted by hot isostatic pressing (HIP) sintering. The product is nearly single phase K0.3MoO3 determined by X-ray powder diffraction (XRD) and energy dispersive spectroscopy (EDS). Measurement of temperature dependence of resistivity reveals that the transport property of polycrystalline K0.3MoO3 obviously differs from that of single crystal due to the grain boundaries and the anisotropic structure in this kind of compound.展开更多
Controlling the anomalous Hall effect(AHE)inspires potential applications of quantum materials in the next generation of electronics.The recently discovered quasi-2D kagome superconductor CsV_(3)Sb_(5) exhibits large ...Controlling the anomalous Hall effect(AHE)inspires potential applications of quantum materials in the next generation of electronics.The recently discovered quasi-2D kagome superconductor CsV_(3)Sb_(5) exhibits large AHE accompanying with the charge-density-wave(CDW)order which provides us an ideal platform to study the interplay among nontrivial band topology,CDW,and unconventional superconductivity.Here,we systematically investigated the pressure effect of the AHE in CsV_(3)Sb_(5).Our high-pressure transport measurements confirm the concurrence of AHE and CDW in the compressed CsV_(3)Sb_(5).Remarkably,distinct from the negative AHE at ambient pressure,a positive anomalous Hall resistivity sets in below 35 K with pressure around 0.75 GPa,which can be attributed to the Fermi surface reconstruction and/or Fermi energy shift in the new CDW phase under pressure.Our work indicates that the anomalous Hall effect in CsV_(3)Sb_(5) is tunable and highly related to the band structure.展开更多
The relationship between charge-density-wave(CDW) and superconductivity(SC), two vital physical phases in condensed matter physics, has always been the focus of scientists’ research over the past decades. Motivated b...The relationship between charge-density-wave(CDW) and superconductivity(SC), two vital physical phases in condensed matter physics, has always been the focus of scientists’ research over the past decades. Motivated by this research hotspot, we systematically studied the physical properties of the layered telluride chalcogenide superconductors CuIr_(2-x)Al_(x)Te_(4)(0 ≤x≤ 0.2). Through the resistance and magnetization measurements, we found that the CDW order was destroyed by a small amount of Al doping. Meanwhile, the superconducting transition temperature(T_(c)) kept changing with the change of doping amount and rose towards the maximum value of 2.75 K when x = 0.075. The value of normalized specific heat jump(△C/γT_(c)) for the highest T_(c) sample CuIr_(2-x)Al_(x)Te_(4)was 1.53, which was larger than the BCS value of 1.43 and showed the bulk superconducting nature. In order to clearly show the relationship between SC and CDW states,we propose a phase diagram of T_(c) vs. doping content.展开更多
We report ^(121)Sb nuclear quadrupole resonance(NQR)measurements on kagome superconductor CsV_(3)Sb_(5) with Tc=2.5 K.^(121)Sb NQR spectra split after a charge density wave(CDW)transition at 94 K,which demonstrates a ...We report ^(121)Sb nuclear quadrupole resonance(NQR)measurements on kagome superconductor CsV_(3)Sb_(5) with Tc=2.5 K.^(121)Sb NQR spectra split after a charge density wave(CDW)transition at 94 K,which demonstrates a commensurate CDW state.The coexistence of the high temperature phase and the CDW phase between 91 K and 94 K manifests that it is a first order phase transition.The CDW order exhibits tri-hexagonal deformation with a lateral shift between the adjacent kagome layers,which is consistent with 2×2×2 superlattice modulation.The superconducting state coexists with CDW order and shows a conventional s-wave behavior in the bulk state.展开更多
Charge and spin orders are intimately related to superconductivity in copper oxide superconductors.Elucidation of the competing orders in various nickel oxide compounds is crucial,given the fact that superconductivity...Charge and spin orders are intimately related to superconductivity in copper oxide superconductors.Elucidation of the competing orders in various nickel oxide compounds is crucial,given the fact that superconductivity has been discovered in Nd_(0.8)Sr_(0.2)NiO_(2)films.Herein,we report structural,electronic transport,magnetic,and thermodynamic characterizations of single crystals of La_(3)Ni_(2)O_(7)and La_(3)Ni_(2)O_(6).La_(3)Ni_(2)O_(7)is metallic with mixed Ni^(2+)and Ni^(3+)valent states.Resistivity measurements yield two transition-like kinks at~110 and 153 K.The kink at 153 K is further revealed from magnetization and specific heat measurements,indicative of the formation of charge and spin density waves.La_(3)Ni_(2)O_(6)single crystals obtained from the topochemical reduction of La_(3)Ni_(2)O_(7)are insulating and show an anomaly at~176 K on magnetic susceptibility.The transition-like behaviors of La_(3)Ni_(2)O_(7)and La_(3)Ni_(2)O_(6)are analogous to those observed in La_(4)Ni_(3)O_(10) and La_(4)Ni_(3)O_(8),suggesting that charge and spin density waves are a common feature in the ternary La-Ni-O system with mixed-valent states of nickel.展开更多
Herein we investigated the electronic properties of layered transition-metal oxides NazTi2Sb2O by 23Na nuclear magnetic reso- nance (NMR) measurement. The resistivity, susceptibility and specific heat measurements s...Herein we investigated the electronic properties of layered transition-metal oxides NazTi2Sb2O by 23Na nuclear magnetic reso- nance (NMR) measurement. The resistivity, susceptibility and specific heat measurements show a phase transition at approxi- mately 114 K (TA). No splitting or broadening in the central line of 23Na NMR spectra is observed below and above the transi- tion temperature indicating no internal field being detected. The spin-lattice relaxation rate divided by T (I/T1T) shows a sharp drop at about 110 K which suggests a gap opening behavior. Below the phase transition temperature zone, I/T1T shows Fermi liquid behavior but with much smaller value indicating the loss of large part of electronic density of states (DOS) because of the gap. No signature of the enhancement of spin fluctuations or magnetic order is found with the decreasing temperature. These results suggest a commensurate charge-density-wave (CDW) phase transition occurring.展开更多
基金the National Natural Science Foundation of China(Grant Nos.12122409,11874330,11904334,12004349,and 11904335)the National Key Research and Development Program of China(Grants Nos.2022YFA1402201 and 2021YFA1601100)the BL03U and BL09U ARPES beam line of Shanghai Synchrotron Radiation Facility(SSRF,China)。
文摘The behaviors of f electrons are crucial for understanding the rich phase diagrams and ground-state properties of heavy fermion(HF)systems.The complicated interactions between f electrons and conduction electrons largely enrich the basic properties of HF compounds.Here the electronic structure,especially the f-electron character,of the charge-density-wave(CDW)Kondo lattice compound CeTe_(3)has been studied by high-resolution angle-resolved photoemission spectroscopy.A weakly dispersive quasiparticle band near the Fermi level has been observed directly,indicating hybridization between f electrons and conduction electrons.Temperature-dependent measurements confirm the localized to itinerant transition of f electrons as the temperature decreases.Furthermore,an energy gap formed by one conduction band at low temperature is gradually closed with increasing temperature,which probably originates from the CDW transition at extremely high temperature.Additionally,orbital information of different electrons has also been acquired with different photon energies and polarizations,which indicates the anisotropy and diverse symmetries of the orbitals.Our results may help understand the complicated f-electron behaviors when considering its interaction with other electrons/photons in CeTe_(3)and other related compounds.
基金Project supported by the National Basic Research Program of China(Grant Nos.2011CBA00101,2010CB923002,2012CB821404,and 2011CB921703)the National Natural Science Foundation of China(Grant Nos.11190022,11274368,and 51272277)the Funds from the Chinese Academy of Sciences
文摘Transmission electron microscopy (TEM) study of SrPt2As2 reveals two incommensurate modulations appearing in the charge-density-wave (CDW) state below TCDW ≈ 470 K. These two structural modulations can be well explained in terms of condensations of two-coupled phonon modes with wave vectors of q1=0.62a* on the a*-b* plane and q2 = 0.23a* on the a*-c* plane. The atomic displacements occur along the b-axis direction for q1 and along the c-axis direction for q2, respectively. Moreover, the correlation between ql and q2 can be generally written as q1 = (q2 + a*)/2 in the CDW state, suggesting the presence of essential coupling between q1 and q2. A small fraction of Ir doping on the Pt site in Sr(Pt1-xIrx)2As2 (x ≤ 0.06) could moderately change these CDW modulations and also affect their superconductivities.
基金Supported by the National Basic Research Program of China under Grant No 2015CB921303the Strategic Priority Research Program(B) of Chinese Academy of Sciences under Grant No XDB07020100
文摘Single crystals of RSeTe2 (R =La, Ce, Pr, Nd) are synthesized using LiC1/RbCI flux. Transport and magnetic properties in the directions parallel and perpendicular to the a-c plane are investigated. We find that the resistivity anisotropy P⊥/P∥ lies in the range 486-615 for different compounds at 2K, indicating the highly two-dimensional character. In both the orientations, the charge-density-wave transitions start near Tcow = 284(3)K, 316(3)K, 359(3)K for NdSeTe2, PrSeTe2, CeSeTe2, respectively, with a considerable increase in dc resistivity. While for LaSeTe2, no obvious resistivity anomaly is observed up to 380K. The value of TCDW increases monotonically with the increasing lattice parameters. Below TCDW, slight anomalies can be observed in NdSeTe2, PrSeTe2 and CeSeTe2 with onset temperature at 193(3)K, 161(3)K, 108(3)K, respectively, decreasing as lattice parameters increase. Magnetic susceptibility measurements show that the valence state of rare earth ions are trivalenee in these compounds. Antiferromagnetie-type magnetic order is formed in CeSeTe2 at 2.1 K, while no magnetic transition is observed in PrSeTe2 and NdSeTe2 down to 1.8 K.
基金Supported by the National Natural Science Foundation of China under Grant No 11025422the National Basic Research Program of China under Grant Nos 2011CB921700 and 2015CB921300the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB07020200
文摘We perform 31p nuclear magnetic resonance (NMR) measurements on a single crystal of RuP. The anomalies in resistivity at about TA = 270 K and TB = 330 K indicate that two phase transitions occur. The line shape of alp NMR spectra in different temperature ranges is attributed to the charge density distribution. The Knight shift and spin-lattice relaxation rate 1/T1T are measured from 1OK to 30OK. At about TA = 270K, they both decrease abruptly with the temperature reduction, which reveals the gap-opening behavior. Well below TA, they act like the case of normal metal. Charge-density-wave phase transition is proposed to interpret the transition occurring at about TA.
基金Project supported by the National Basic Research Program of China(Grant Nos.2012CB821402 and 2015CB921401)the National Natural Science Foundation of China(Grant Nos.91421101,11422429,and 11204312)+1 种基金the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning,China,STCSM of China(Grant No.15XD1500200)Work at Brookhaven National Laboratory was supported by the US DOE under Contract No.DESC00112704
文摘It was found that selenium doping can suppress the charge-density-wave(CDW) order and induce bulk superconductivity in ZrTe3. The observed superconducting dome suggests the existence of a CDW quantum critical point(QCP) in ZrTe3-xSex near x ≈ 0.04. To elucidate the superconducting state near the CDW QCP, we measure the thermal conductivity of two ZrTe(3-x)Sex single crystals(x = 0.044 and 0.051) down to 80 m K. For both samples, the residual linear term κ0/T at zero field is negligible, which is a clear evidence for nodeless superconducting gap. Furthermore, the field dependence of κ0/T manifests a multigap behavior. These results demonstrate multiple nodeless superconducting gaps in ZrTe(3-x)Sex,which indicates conventional superconductivity despite of the existence of a CDW QCP.
基金the National Natural Science Foundation of China (No. 10474074) the StateKey Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology, WUT 2004 M03).
文摘Nearly single-phase and polycrystalline charge-density-wave compound K0.3MoO3 have been prepared by using a simple method. In this work, K2CO3 and MoOs were used as starting materials and reacted by hot isostatic pressing (HIP) sintering. The product is nearly single phase K0.3MoO3 determined by X-ray powder diffraction (XRD) and energy dispersive spectroscopy (EDS). Measurement of temperature dependence of resistivity reveals that the transport property of polycrystalline K0.3MoO3 obviously differs from that of single crystal due to the grain boundaries and the anisotropic structure in this kind of compound.
基金the National Key Research and Development Program of China(Grant Nos.2019YFA0704900 and 2017YFA0303001)the Anhui Initiative in Quantum Information Technologies(Grant No.AHY160000)+5 种基金the Science Challenge Project of China(Grant No.TZ2016004)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(CAS)(Grant No.QYZDYSSWSLH021)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB25000000)the National Natural Science Foundation of China(Grants Nos.11888101 and 11534010)the Collaborative Innovation Program of Hefei Science Center,CAS(Grant No.2020HSC-CIP014)the Fundamental Research Funds for the Central Universities,China(Grant No.WK3510000011).
文摘Controlling the anomalous Hall effect(AHE)inspires potential applications of quantum materials in the next generation of electronics.The recently discovered quasi-2D kagome superconductor CsV_(3)Sb_(5) exhibits large AHE accompanying with the charge-density-wave(CDW)order which provides us an ideal platform to study the interplay among nontrivial band topology,CDW,and unconventional superconductivity.Here,we systematically investigated the pressure effect of the AHE in CsV_(3)Sb_(5).Our high-pressure transport measurements confirm the concurrence of AHE and CDW in the compressed CsV_(3)Sb_(5).Remarkably,distinct from the negative AHE at ambient pressure,a positive anomalous Hall resistivity sets in below 35 K with pressure around 0.75 GPa,which can be attributed to the Fermi surface reconstruction and/or Fermi energy shift in the new CDW phase under pressure.Our work indicates that the anomalous Hall effect in CsV_(3)Sb_(5) is tunable and highly related to the band structure.
基金the financial support by the National Natural Science Foundation of China (Grant No. 11922415)Guangdong Basic and Applied Basic Research Foundation, China (Grants No. 2019A1515011718)+8 种基金the Pearl River Scholarship Program of Guangdong Province Universities and Colleges (Grants No. 20191001)supported by the National Natural Science Foundation of China (Grants No. 11974432)the National Key R&D Program of China (Grant Nos. 2018YFA0306001 and 2017YFA0206203)the financial support by the National Key Laboratory Development Fund (No. 20190030)partial support by the National Key R&D Program of China (Grant No. 2017YFA0303000)National Natural Science Foundation of China (Grant No. 11827805)Shanghai Municipal Science and Technology Major Project, China (Grant No. 2019SHZDZX01)supported by the National Natural Science Foundation of China (Grant Nos. 11904414 and 12174454)the National Key R&D Program of China (Grant No. 2019YFA0705702)。
文摘The relationship between charge-density-wave(CDW) and superconductivity(SC), two vital physical phases in condensed matter physics, has always been the focus of scientists’ research over the past decades. Motivated by this research hotspot, we systematically studied the physical properties of the layered telluride chalcogenide superconductors CuIr_(2-x)Al_(x)Te_(4)(0 ≤x≤ 0.2). Through the resistance and magnetization measurements, we found that the CDW order was destroyed by a small amount of Al doping. Meanwhile, the superconducting transition temperature(T_(c)) kept changing with the change of doping amount and rose towards the maximum value of 2.75 K when x = 0.075. The value of normalized specific heat jump(△C/γT_(c)) for the highest T_(c) sample CuIr_(2-x)Al_(x)Te_(4)was 1.53, which was larger than the BCS value of 1.43 and showed the bulk superconducting nature. In order to clearly show the relationship between SC and CDW states,we propose a phase diagram of T_(c) vs. doping content.
基金the National Key Research and Development Program of China(Grant Nos.2017YFA0302901,2018YFA0305702,2018YFE0202600,and 2016YFA0300504)the National Natural Science Foundation of China(Grant Nos.12134018,11921004,11822412,and 11774423)+1 种基金the Beijing Natural Science Foundation,China(Grant No.Z200005)the Strategic Priority Research Program and Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Grant No.XDB33010100)。
文摘We report ^(121)Sb nuclear quadrupole resonance(NQR)measurements on kagome superconductor CsV_(3)Sb_(5) with Tc=2.5 K.^(121)Sb NQR spectra split after a charge density wave(CDW)transition at 94 K,which demonstrates a commensurate CDW state.The coexistence of the high temperature phase and the CDW phase between 91 K and 94 K manifests that it is a first order phase transition.The CDW order exhibits tri-hexagonal deformation with a lateral shift between the adjacent kagome layers,which is consistent with 2×2×2 superlattice modulation.The superconducting state coexists with CDW order and shows a conventional s-wave behavior in the bulk state.
基金supported by the National Natural Science Foundation of China(Grant Nos.12174454,11904414,11904416,and U2130101)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021B1515120015)+1 种基金the Guangzhou Basic and Applied Basic Research Foundation(Grant No.202201011123)the National Key Research and Development Program of China(Grant Nos.2019YFA0705702,2020YFA0406003,2021YFA1400401,and 2021YFA0718900)。
文摘Charge and spin orders are intimately related to superconductivity in copper oxide superconductors.Elucidation of the competing orders in various nickel oxide compounds is crucial,given the fact that superconductivity has been discovered in Nd_(0.8)Sr_(0.2)NiO_(2)films.Herein,we report structural,electronic transport,magnetic,and thermodynamic characterizations of single crystals of La_(3)Ni_(2)O_(7)and La_(3)Ni_(2)O_(6).La_(3)Ni_(2)O_(7)is metallic with mixed Ni^(2+)and Ni^(3+)valent states.Resistivity measurements yield two transition-like kinks at~110 and 153 K.The kink at 153 K is further revealed from magnetization and specific heat measurements,indicative of the formation of charge and spin density waves.La_(3)Ni_(2)O_(6)single crystals obtained from the topochemical reduction of La_(3)Ni_(2)O_(7)are insulating and show an anomaly at~176 K on magnetic susceptibility.The transition-like behaviors of La_(3)Ni_(2)O_(7)and La_(3)Ni_(2)O_(6)are analogous to those observed in La_(4)Ni_(3)O_(10) and La_(4)Ni_(3)O_(8),suggesting that charge and spin density waves are a common feature in the ternary La-Ni-O system with mixed-valent states of nickel.
基金supported by the National Natural Science Foundation of China(Grant No.11025422)the National Basic Research Program of China(Grant No.2011CB921701)
文摘Herein we investigated the electronic properties of layered transition-metal oxides NazTi2Sb2O by 23Na nuclear magnetic reso- nance (NMR) measurement. The resistivity, susceptibility and specific heat measurements show a phase transition at approxi- mately 114 K (TA). No splitting or broadening in the central line of 23Na NMR spectra is observed below and above the transi- tion temperature indicating no internal field being detected. The spin-lattice relaxation rate divided by T (I/T1T) shows a sharp drop at about 110 K which suggests a gap opening behavior. Below the phase transition temperature zone, I/T1T shows Fermi liquid behavior but with much smaller value indicating the loss of large part of electronic density of states (DOS) because of the gap. No signature of the enhancement of spin fluctuations or magnetic order is found with the decreasing temperature. These results suggest a commensurate charge-density-wave (CDW) phase transition occurring.