期刊文献+
共找到83,048篇文章
< 1 2 250 >
每页显示 20 50 100
Response characteristics of PWR primary circuit under SBLOCAs considering steam bypass discharging
1
作者 Shuai Yang Xiang-Bin Li +2 位作者 Yu-Sheng Liu Jia-Ning Xu De-Chen Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第6期189-201,共13页
Small-break superposed station blackout(SBO)accidents are the basic design accidents of nuclear power plants.Under the condition of a small break in the cold leg,SBO further increases the severity of the accident,and ... Small-break superposed station blackout(SBO)accidents are the basic design accidents of nuclear power plants.Under the condition of a small break in the cold leg,SBO further increases the severity of the accident,and the steam bypass discharg-ing system(GCT)in the second circuit can play an important role in guaranteeing core safety.To explore the influence of the GCT on the thermal-hydraulic characteristics of the primary circuit,RELAP5 software was used to establish a numerical model based on a typical pressurized water reactor nuclear power plant.Five different small breaks in the cold-leg super-posed SBO were selected,and the impact of the GCT operation on the transient response characteristics of the primary and secondary circuit systems was analyzed.The results show that the GCT plays an indispensable role in core heat removal during an accident;otherwise,core safety cannot be guaranteed.The GCT was used in conjunction with the primary safety injection system during the placement process.When the break diameter was greater than a certain critical value,the core cooling rate could not be guaranteed to be less than 100 K/h;however,the core remained in a safe state. 展开更多
关键词 Steam bypass discharging Pressurized water reactor SBLOCA Numerical simulation
下载PDF
Discharging patients home from the intensive care unit:A new trend
2
作者 Esraa M Hassan Abbas B Jama +4 位作者 Ahmed Sharaf Asim Shaikh Mohamad El Labban Salim Surani Syed A Khan 《World Journal of Clinical Cases》 SCIE 2024年第23期5313-5319,共7页
Discharging patients directly to home from the intensive care unit(ICU)is becoming a new trend.This review examines the feasibility,benefits,challenges,and considerations of directly discharging ICU patients.By analyz... Discharging patients directly to home from the intensive care unit(ICU)is becoming a new trend.This review examines the feasibility,benefits,challenges,and considerations of directly discharging ICU patients.By analyzing available evidence and healthcare professionals'experiences,the review explores the potential impacts on patient outcomes and healthcare systems.The practice of direct discharge from the ICU presents both opportunities and complexities.While it can potentially reduce costs,enhance patient comfort,and mitigate complications linked to extended hospitalization,it necessitates meticulous patient selection and robust post-discharge support mechanisms.Implementing this strategy successfully mandates the availability of home-based care services and a careful assessment of the patient's readiness for the transition.Through critical evaluation of existing literature,this review underscores the significance of tailored patient selection criteria and comprehensive post-discharge support systems to ensure patient safety and optimal recovery.The insights provided contribute evidence-based recommendations for refining the direct discharge approach,fostering improved patient outcomes,heightened satisfaction,and streamlined healthcare processes.Ultimately,the review seeks to balance patientcentered care and effective resource utilization within ICU discharge strategies. 展开更多
关键词 Intensive care unit Critical care Early discharge Cost effective critical care Patient comfort Early recovery
下载PDF
Flexible bidirectional pulse charging regulation achieving long-life lithium-ion batteries 被引量:1
3
作者 Xiaodong Xu Shengjin Tang +9 位作者 Xuebing Han Languang Lu Yudi Qin Jiuyu Du Yu Wu Yalun Li Chuanqiang Yu Xiaoyan Sun Xuning Feng Minggao Ouyang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期59-71,共13页
Typical application scenarios,such as vehicle to grid(V2G)and frequency regulation,have imposed significant long-life demands on lithium-ion batteries.Herein,we propose an advanced battery life-extension method employ... Typical application scenarios,such as vehicle to grid(V2G)and frequency regulation,have imposed significant long-life demands on lithium-ion batteries.Herein,we propose an advanced battery life-extension method employing bidirectional pulse charging(BPC)strategy.Unlike traditional constant current charging methods,BPC strategy not only achieves comparable charging speeds but also facilitates V2G frequency regulation simultaneously.It significantly enhances battery cycle ampere-hour throughput and demonstrates remarkable life extension capabilities.For this interesting conclusion,adopting model identification and postmortem characterization to reveal the life regulation mechanism of BPC:it mitigates battery capacity loss attributed to loss of lithium-ion inventory(LLI)in graphite anodes by intermittently regulating the overall battery voltage and anode potential using a negative charging current.Then,from the perspective of internal side reaction,the life extension mechanism is further revealed as inhibition of solid electrolyte interphase(SEI)and lithium dendrite growth by regulating voltage with a bidirectional pulse current,and a semi-empirical life degradation model combining SEI and lithium dendrite growth is developed for BPC scenarios health management,the model parameters are identified by genetic algorithm with the life simulation exhibiting an accuracy exceeding 99%.This finding indicates that under typical rate conditions,adaptable BPC strategies can extend the service life of LFP battery by approximately 123%.Consequently,the developed advanced BPC strategy offers innovative perspectives and insights for the development of long-life battery applications in the future. 展开更多
关键词 Lithium-ion battery Long-life regulation Bidirectional pulse charging Mechanism identification
下载PDF
A comparative study of data-driven battery capacity estimation based on partial charging curves 被引量:1
4
作者 Chuanping Lin Jun Xu +5 位作者 Delong Jiang Jiayang Hou Ying Liang Xianggong Zhang Enhu Li Xuesong Mei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期409-420,I0010,共13页
With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair compar... With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair comparison, and performance rationalization of these methods are lacking, due to the scattered existing studies. To address these issues, we develop 20 capacity estimation methods from three perspectives:charging sequence construction, input forms, and ML models. 22,582 charging curves are generated from 44 cells with different battery chemistry and operating conditions to validate the performance. Through comprehensive and unbiased comparison, the long short-term memory(LSTM) based neural network exhibits the best accuracy and robustness. Across all 6503 tested samples, the mean absolute percentage error(MAPE) for capacity estimation using LSTM is 0.61%, with a maximum error of only 3.94%. Even with the addition of 3 m V voltage noise or the extension of sampling intervals to 60 s, the average MAPE remains below 2%. Furthermore, the charging sequences are provided with physical explanations related to battery degradation to enhance confidence in their application. Recommendations for using other competitive methods are also presented. This work provides valuable insights and guidance for estimating battery capacity based on partial charging curves. 展开更多
关键词 Lithium-ion battery Partial charging curves Capacity estimation DATA-DRIVEN Sampling frequency
下载PDF
Ultraconformable Integrated Wireless Charging Micro-Supercapacitor Skin 被引量:1
5
作者 Chang Gao Qing You +5 位作者 Jiancheng Huang Jingye Sun Xuan Yao Mingqiang Zhu Yang Zhao Tao Deng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期46-58,共13页
Conformable and wire-less charging energy storage devices play important roles in enabling the fast development of wearable,non-contact soft electronics.However,current wire-less charging power sources are still restr... Conformable and wire-less charging energy storage devices play important roles in enabling the fast development of wearable,non-contact soft electronics.However,current wire-less charging power sources are still restricted by limited flexural angles and fragile connection of components,resulting in the failure expression of performance and constraining their fur-ther applications in health monitoring wearables and moveable artificial limbs.Herein,we present an ultracompatible skin-like integrated wireless charging micro-supercapacitor,which building blocks(including electrolyte,electrode and substrate)are all evaporated by liquid precursor.Owing to the infiltration and permeation of the liquid,each part of the integrated device attached firmly with each other,forming a compact and all-in-one configuration.In addition,benefitting from the controllable volume of electrode solution precursor,the electrode thickness is easily regulated varying from 11.7 to 112.5μm.This prepared thin IWC-MSC skin can fit well with curving human body,and could be wireless charged to store electricity into high capacitive micro-supercapacitors(11.39 F cm-3)of the integrated device.We believe this work will shed light on the construction of skin-attachable electronics and irregular sensing microrobots. 展开更多
关键词 Micro-supercapacitor Electronic skin Supercapacitor skin Wireless charging energy storage device
下载PDF
Unraveling the Fundamental Mechanism of Interface Conductive Network Influence on the Fast‑Charging Performance of SiO‑Based Anode for Lithium‑Ion Batteries 被引量:1
6
作者 Ruirui Zhang Zhexi Xiao +6 位作者 Zhenkang Lin Xinghao Yan Ziying He Hairong Jiang Zhou Yang Xilai Jia Fei Wei 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期53-68,共16页
Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effe... Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance. 展开更多
关键词 Fast charging SiO anode Interface conductive network Ionic transport Mechanical stability
下载PDF
Electrochemical Hydrogen Charging on Corrosion Behavior of Ti-6Al-4V Alloy in Artificial Seawater 被引量:1
7
作者 Yanxin Qiao Yue Qin +5 位作者 Huiling Zhou Lanlan Yang Xiaojing Wang Zhengbin Wang Zhenguang Liu Jiasheng Zou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期296-308,共13页
This study employs advanced electrochemical and surface characterization techniques to investigate the impact of electrochemical hydrogen charging on the corrosion behavior and surface film of the Ti-6Al-4V alloy.The ... This study employs advanced electrochemical and surface characterization techniques to investigate the impact of electrochemical hydrogen charging on the corrosion behavior and surface film of the Ti-6Al-4V alloy.The findings revealed the formation ofγ-TiH andδ-TiH_(2) hydrides in the alloy after hydrogen charging.Prolonging hydrogen charging resulted in more significant degradation of the alloy microstructure,leading to deteriorated protectiveness of the surface film.This trend was further confirmed by the electrochemical measurements,which showed that the corrosion resistance of the alloy progressively worsened as the hydrogen charging time was increased.Consequently,this work provides valuable insights into the mechanisms underlying the corrosion of Ti-6Al-4V alloy under hydrogen charging conditions. 展开更多
关键词 Ti-6Al-4V alloy Hydrogen charging Electrochemical corrosion Passive film
下载PDF
ZnO Additive Boosts Charging Speed and Cycling Stability of Electrolytic Zn–Mn Batteries 被引量:1
8
作者 Jin Wu Yang Tang +6 位作者 Haohang Xu Guandie Ma Jinhong Jiang Changpeng Xian Maowen Xu Shu‑Juan Bao Hao Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期293-304,共12页
Electrolytic aqueous zinc-manganese(Zn–Mn) batteries have the advantage of high discharge voltage and high capacity due to two-electron reactions. However, the pitfall of electrolytic Zn–Mn batteries is the sluggish... Electrolytic aqueous zinc-manganese(Zn–Mn) batteries have the advantage of high discharge voltage and high capacity due to two-electron reactions. However, the pitfall of electrolytic Zn–Mn batteries is the sluggish deposition reaction kinetics of manganese oxide during the charge process and short cycle life. We show that, incorporating ZnO electrolyte additive can form a neutral and highly viscous gel-like electrolyte and render a new form of electrolytic Zn–Mn batteries with significantly improved charging capabilities. Specifically, the ZnO gel-like electrolyte activates the zinc sulfate hydroxide hydrate assisted Mn^(2+) deposition reaction and induces phase and structure change of the deposited manganese oxide(Zn_(2)Mn_(3)O_8·H_(2)O nanorods array), resulting in a significant enhancement of the charge capability and discharge efficiency. The charge capacity increases to 2.5 mAh cm^(-2) after 1 h constant-voltage charging at 2.0 V vs. Zn/Zn^(2+), and the capacity can retain for up to 2000 cycles with negligible attenuation. This research lays the foundation for the advancement of electrolytic Zn–Mn batteries with enhanced charging capability. 展开更多
关键词 Electrolytic aqueous zinc-manganese batteries Electrolyte pH value ZnO electrolyte additive Fast constant-voltage charging ability
下载PDF
Multilevel carbon architecture of subnanoscopic silicon for fast‐charging high‐energy‐density lithium‐ion batteries 被引量:1
9
作者 Meisheng Han Yongbiao Mu +2 位作者 Lei Wei Lin Zeng Tianshou Zhao 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期256-268,共13页
Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and p... Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C. 展开更多
关键词 fast charging high energy densities lithium‐ion batteries multilevel carbon architecture subnanoscopic silicon anode
下载PDF
Discharge mode and particle transport in radio frequency capacitively coupled Ar/O_(2)plasma discharges
10
作者 Zhuo-Yao Gao Wan Dong +3 位作者 Chong-Biao Tian Xing-Zhao Jiang Zhong-Ling Dai Yuan-Hong Song 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期451-460,共10页
Simulations are conducted on capacitively coupled Ar/O_(2)mixed gas discharges employing a one-dimensional fluid coupled with an electron Monte Carlo(MC)model.The research explores the impact of different O_(2)ratio a... Simulations are conducted on capacitively coupled Ar/O_(2)mixed gas discharges employing a one-dimensional fluid coupled with an electron Monte Carlo(MC)model.The research explores the impact of different O_(2)ratio and pressures on the discharge characteristics of Ar/O_(2)plasma.At a fixed Ar/O_(2)gas ratio,with the increasing pressure,higher ion densities,as well as a slight increase in electron density in the bulk region can be observed.The discharge remains dominated by the drift-ambipolar(DA)mode,and the flux of O(3P)at the electrode increases with the increasing pressure due to higher background gas density,while the fluxes of O(1D)and Ardecrease due to the pronounced loss rate.With the increasing proportion of O_(2),a change in the dominant discharge mode from a mode to DA mode can be detected,and the O_(2)-associated charged particle densities are significantly increased.However,Ar+density shows a trend of increasing and then decreasing,while for neutral fluxes at the electrode,Arflux decreases,and O(3P)flux increases with the reduced Ar gas proportion,while trends in O(1D)flux show slight differences.The evolution of the densities of the charged particle and the neutral fluxes under different discharge parameters are discussed in detail using the ionization characteristics as well as the transport properties.Hopefully,more comprehensive understanding of Ar/O_(2)discharge characteristics in this work will provide a valuable reference for the industry. 展开更多
关键词 Ar/O_(2) mixed gas discharges ELECTRON dynamics transport of chargED and NEUTRAL PARTICLES
下载PDF
Formation mechanism of bright and dark concentric-ring pattern in dielectric barrier discharge
11
作者 李彩霞 冯建宇 +4 位作者 王舒畅 李骋 冉俊霞 潘宇扬 董丽芳 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第8期50-57,共8页
In this work,a bright and dark concentric-ring pattern is reported in a dielectric barrier discharge for the first time.The spatiotemporal dynamics of the bright and dark concentric-ring pattern are investigated with ... In this work,a bright and dark concentric-ring pattern is reported in a dielectric barrier discharge for the first time.The spatiotemporal dynamics of the bright and dark concentric-ring pattern are investigated with an intensified charge-coupled device and photomultiplier tubes.The results indicate that the bright and dark concentric-ring pattern is composed of three concentric-ring sublattices.These are bright concentric-ring structures,dark concentric-ring structures and wider concentric-ring structures,respectively.The bright concentric-ring structures and dark concentricring structures are alternately distributed.The bright concentric-ring structures are located at the centre of the wider concentric-ring structures.The wider concentric-ring structures first form from the outer edge and gradually develop to the centre.The essence of all three concentric-ring structures is the individual discharge filaments.The optical emission spectra of different sublattices are acquired and analysed.It is found that the plasma parameters of the three concentricring sublattices are different.Finally,the formation mechanism of the bright and dark concentricring pattern is discussed. 展开更多
关键词 dielectric barrier discharge(DBD) concentric-ring pattern spatio-temporal dynamics optical emission spectroscopy wall charges
下载PDF
Study of three-dimensional spatial diffuse discharge in contact electrode structure applied to air purification
12
作者 Shuai XU Wenzheng LIU +3 位作者 Jiaying QIN Yiwei SUN Xitao JIANG Qi QI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第10期73-81,共9页
In this work,based on the role of pre-ionization of the non-uniform electric field and its effect of reducing the collisional ionization coefficient,a diffuse dielectric barrier discharge plasma is formed in the open ... In this work,based on the role of pre-ionization of the non-uniform electric field and its effect of reducing the collisional ionization coefficient,a diffuse dielectric barrier discharge plasma is formed in the open space outside the electrode structure at a lower voltage by constructing a three-dimensional non-uniform spatial electric field using a contact electrode structure.The air purification study is also carried out.Firstly,a contact electrode structure is constructed using a three-dimensional wire electrode.The distribution characteristics of the spatial electric field formed by this electrode structure are analyzed,and the effects of the non-uniform electric field and the different angles of the vertical wire on the generation of three-dimensional spatial diffuse discharge are investigated.Secondly,the copper foam contact electrode structure is constructed using copper foam material,and the effects of different mesh sizes on the electric field distribution are analyzed.The results show that as the mesh size of the copper foam becomes larger,a strong electric field region exists not only on the surface of the insulating layer,but also on the surface of the vertical wires inside the copper foam,i.e.,the strong electric field region shows a three-dimensional distribution.Besides,as the mesh size increases,the area of the vertical strong electric field also increases.However,the electric field strength on the surface of the insulating layer gradually decreases.Therefore,the appropriate mesh size can effectively increase the discharge area,which is conducive to improving the air purification efficiency.Finally,a highly permeable stacked electrode structure of multilayer wire-copper foam is designed.In combination with an ozone treatment catalyst,an air purification device is fabricated,and the air purification experiment is carried out. 展开更多
关键词 dielectric barrier discharge three-dimensional spatial discharge atmospheric pressure air diffusion discharge air purification
下载PDF
Comparative analysis of single-crater parameters in ultrasonic-assisted and unassisted micro-EDM of Ti6Al4V using discharge plasma imaging
13
作者 Sohaib Raza Chandrakant Nirala 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第2期11-24,共14页
Ultrasonic-assisted micro-electro-discharge machining(EDM)has the potential to enhance processing responses such as material removal rate(MRR)and surface finish.To understand the reasons for this enhancement,the physi... Ultrasonic-assisted micro-electro-discharge machining(EDM)has the potential to enhance processing responses such as material removal rate(MRR)and surface finish.To understand the reasons for this enhancement,the physical mechanisms responsible for the individual discharges and the craters that they form need to be explored.This work examines features of craters formed by single discharges at various parameter values in both conventional and ultrasonic-assistedEDM of Ti6Al4V.High-speed imaging of the plasma channel is performed,and data on the individual discharges are captured in real-time.A 2D axisymmetric model using finite element software is established to model crater formation.On the basis of simulation and experimental results,a comparative study is then carried out to examine the effects of ultrasonic vibrational assistance on crater geometry.For every set ofEDM parameters,the crater diameter and depth from a single discharge are found to be higher in ultrasonic-assistedEDM than in conventionalEDM.The improved crater geometry and the reduced bulge formation at the crater edges are attributed to the increased melt pool velocity and temperature predicted by the model. 展开更多
关键词 Ultrasonic vibration discharge crater Plasma diameter Single discharge
下载PDF
Effect of dielectric material on the uniformity of nanosecond pulsed dielectric barrier discharge
14
作者 Wenhao ZHOU Dongxuan ZHANG +3 位作者 Xiaohui DUAN Xi ZHU Feng LIU Zhi FANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第9期79-87,共9页
Dielectric barrier discharge(DBD)is considered as a promising technique to produce large volume uniform plasma at atmospheric pressure,and the dielectric barrier layer between the electrodes plays a key role in the DB... Dielectric barrier discharge(DBD)is considered as a promising technique to produce large volume uniform plasma at atmospheric pressure,and the dielectric barrier layer between the electrodes plays a key role in the DBD processes and enhancing discharge uniformity.In this work,the uniformity and discharge characteristics of the nanosecond(ns)pulsed DBD with dielectric barrier layers made of alumina,quartz glass,polycarbonate(PC),and polypropylene(PP)are investigated via discharge image observation,voltage-current waveform measurement and optical emission spectral diagnosis.Through analyzing discharge image by gray value standard deviation method,the discharge uniformity is quantitatively calculated.The effects of the space electric field intensity,the electron density(Ne),and the space reactive species on the uniformity are studied with quantifying the gap voltage Ug and the discharge current Ig,analyzing the recorded optical emission spectra,and simulating the temporal distribution of Ne with a one-dimensional fluid model.It is found that as the relative permittivity of the dielectric materials increases,the space electric field intensity is enhanced,which results in a higher Ne and electron temperature(Te).Therefore,an appropriate value of space electric field intensity can promote electron avalanches,resulting in uniform and stable plasma by the merging of electron avalanches.However,an excessive value of space electric field intensity leads to the aggregation of space charges and the distortion of the space electric field,which reduce the discharge uniformity.The surface roughness and the surface charge decay are measured to explain the influences of the surface properties and the second electron emission on the discharge uniformity.The results in this work give a comprehensive understanding of the effect of the dielectric materials on the DBD uniformity,and contribute to the selection of dielectric materials for DBD reactor and the realization of atmospheric pressure uniform,stable,and reactive plasma sources. 展开更多
关键词 dielectric barrier discharge dielectric material UNIFORMITY discharge characteristics
下载PDF
On the evolution and formation of discharge morphology in pulsed dielectric barrier discharge
15
作者 陈星宇 李孟琦 +3 位作者 王威逸 张权治 彭涛 熊紫兰 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期101-113,共13页
The discharge morphology of pulsed dielectric barrier discharge(PDBD) plays important roles in its applications. Here, we systematically investigated the effects of the voltage amplitude,discharge gap, and O_(2)conten... The discharge morphology of pulsed dielectric barrier discharge(PDBD) plays important roles in its applications. Here, we systematically investigated the effects of the voltage amplitude,discharge gap, and O_(2)content on the PDBD morphology, and revealed the possible underlying mechanism of the U-shaped formation. First, the morphological evolution under different conditions was recorded. A unique U-shaped region appears in the middle edge region when the gap is larger than 2 mm, while the entire discharge region remains columnar under a 2 mm gap in He PDBD. The width of the discharge and the U-shaped region increase with the increase in voltage, and decrease with the increase of the gap and O_(2)content. To explain this phenomenon,a two-dimensional symmetric model was developed to simulate the spatiotemporal evolution of different species and calculate the electric thrust. The discharge morphology evolution directly corresponds to the excited-state atomic reduction process. The electric thrust on the charged particles mainly determines the reaction region and strongly influences the U-shaped formation.When the gap is less than 2 mm, the electric thrust is homogeneous throughout the entire region,resulting in a columnar shape. However, when the gap is larger than 2 mm or O_(2)is added, the electric thrust in the edge region becomes greater than that in the middle, leading to the U-shaped formation. Furthermore, in He PDBD, the charged particles generating electric thrust are mainly electrons and helium ions, while in He/O_(2)PDBD those that generate electric thrust at the outer edge of the electrode surface are mainly various oxygen-containing ions. 展开更多
关键词 low-temperature plasma dielectric barrier discharge discharge morphology particle distribution electric thrust
下载PDF
Discharge and mass transfer characteristics of atmospheric pressure gas-solid two-phase gliding arc
16
作者 Min ZHU Yuchen PING +2 位作者 Yinghao ZHANG Chaohai ZHANG Shuqun WU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第9期88-96,共9页
In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the... In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the blade electrodes.A range of experimental parameters,including the inter-electrode spacing,gas flow rate,applied voltage,and the type of the powder,were systematically varied to elucidate the influence of solid powder matter on the dynamics of gliding arc discharge(GAD).The discharge images were captured by ICCD and digital camera to investigate the mass transfer characteristics of GS-GAD,and the electrical parameters,such as the effective values of voltage,current,and discharge power were record to reveal the discharge characteristics of GS-GAD.The results demonstrate that powder undergoes spontaneous movement towards the upper region of the gliding arc due to the influence of electric field force.Increasing the discharge voltage,decreasing relative dielectric constant of the powder and reducing the electrode-to-sieve-plate distance all contribute to a greater involvement of powder in the GAD process,subsequently resulting in an enhanced powder concentration within the GAD region.Additionally,powder located beneath the gliding arc experiences downward resistance caused by the opposing gas flow and arc.Excessive gas flow rate notably hampers the powder concentration within the discharge region,and the velocity of powder motion in the upper part of the GAD region is reduced.Under the condition of electrode-to-sieve-plate distance of 30 mm,gas flow rate of 1.5 L/min,and peak-to-peak voltage of 31 kV,the best combination of arc gliding and powder spark discharge phenomena can be achieved with the addition of Al_(2)O_(3) powder. 展开更多
关键词 gliding arc discharge atmospheric pressure plasma multiphase discharge mass transfer
下载PDF
Predictors of Abnormal Vaginal Discharge among Women of Reproductive Age in Southeast Nigeria
17
作者 Jideuma Egwim Victor Dike +5 位作者 Hope Igbonagwam Nkechinyere Oke Uzoma Amajo Akuchi Okafor Angela Izegbune Ijedimma Okafor 《International Journal of Clinical Medicine》 CAS 2024年第7期240-256,共17页
Background: An abnormal vaginal discharge is a common complaint among women of reproductive age, and it can indicate serious conditions like pelvic inflammatory disease and cervical cancer. This study aimed to assess ... Background: An abnormal vaginal discharge is a common complaint among women of reproductive age, and it can indicate serious conditions like pelvic inflammatory disease and cervical cancer. This study aimed to assess the predictors of abnormal vaginal discharge in women of reproductive age group in Imo State, Southeast Nigeria. Methods: A cross-sectional study was conducted among 368 women of reproductive age group attending the clinic at Federal University Teaching Hospital Owerri, in Imo State, Nigeria. Respondents were recruited using a systematic sampling technique. Data were collected using a pre-tested interviewer-administered questionnaire. Multivariable analysis was performed to determine predictors of abnormal vaginal discharge. Statistical significance was set at p Results: The mean age of the respondents was 30 ±  4.5 years. Predictors of abnormal vaginal discharge were: age 36 - 45 years (OR: 4.5;95% C.I: 1.023 - 8.967, p = 0.041), being a student (OR: 2.4: 95% C.I: 1.496 - 7.336, p = 0.003), use of oral contraceptives (OR: 3.4;95% C.I: 1.068 - 6.932, p = 0.010), use of water cistern (OR: 4.7;C.I: 1.654 - 5.210, p = 0.028) anal hygiene practices (OR: 2.7;95% C.I: 1.142 - 4.809, p Conclusion: These findings suggest that targeted sexual and reproductive health interventions should be provided to reduce the risk of abnormal vaginal discharge in women of reproductive age group. 展开更多
关键词 PREDICTORS ABNORMAL VAGINAL dischargE
下载PDF
Experimental study on the effect of H_(2)O and O_(2) on the degradation of SF_(6) by pulsed dielectric barrier discharge
18
作者 李亚龙 万昆 +5 位作者 王宇非 张晓星 杨照迪 傅明利 卓然 王邸博 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第2期125-131,共7页
SF_(6) has excellent insulation performance and arc extinguishing ability,and is widely used in the power industry.However,its global warming potential is about 23,500 times that of C0_(2),it can exist stably in the a... SF_(6) has excellent insulation performance and arc extinguishing ability,and is widely used in the power industry.However,its global warming potential is about 23,500 times that of C0_(2),it can exist stably in the atmosphere,it is not easily degradable and is of great potential harm to the environment.Based on pulsed dielectric barrier discharge plasma technology,the effects of H_(2)O and 0_(2) on the degradation of SF_(6) were studied.Studies have shown that H_(2)O can effectively promote the decomposition of SF_(6) and improve its degradation rate and energy efficiency of degradation.Under the action of a pulse input voltage and input frequency of 15 kV and 15 kHz,respectively,when H_(2)O is added alone the effect of 1% H_(2)O is the best,and the rate and energy efficiency of degradation of SF_(6) reach their maximum values,which are 91.9% and 8.25 g kWh^(-1),respectively.The synergistic effect of H_(2)O and O_(2) on the degradation of SF_(6) was similar to that of H_(2)O.When the concentration of H_(2)O and O_(2) was 1%,the system obtained the best rate and energy efficiency of degradation,namely 89.7% and 8.05 g kWh~(-1),respectively.At the same time,different external gases exhibit different capabilities to regulate decomposition products.The addition of H_(2)O can effectively improve the selectivity of S0_(2).Under the synergistic effect of H_(2)O and O_(2),with increase in O_(2) concentration the degradation products gradually transformed into SO_(2)F_(2).From the perspective of harmless treatment of the degradation products of SF_(6),the addition of O_(2) during the SF_(6) degradation process should be avoided. 展开更多
关键词 SF_(6) pulsed dielectric barrier discharge DEGRADATION discharge gas
下载PDF
Novel method for identifying the stages of discharge underwater based on impedance change characteristic
19
作者 高崇 康忠健 +3 位作者 龚大建 张扬 王玉芳 孙一鸣 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期133-145,共13页
It is difficult to determine the discharge stages in a fixed time of repetitive discharge underwater due to the arc formation process being susceptible to external environmental influences. This paper proposes a novel... It is difficult to determine the discharge stages in a fixed time of repetitive discharge underwater due to the arc formation process being susceptible to external environmental influences. This paper proposes a novel underwater discharge stage identification method based on the Strong Tracking Filter(STF) and impedance change characteristics. The time-varying equivalent circuit model of the discharge underwater is established based on the plasma theory analysis of the impedance change characteristics and mechanism of the discharge process. The STF is used to reduce the randomness of the impedance of repeated discharges underwater, and then the universal identification resistance data is obtained. Based on the resistance variation characteristics of the discriminating resistance of the pre-breakdown, main, and oscillatory discharge stages, the threshold values for determining the discharge stage are obtained. These include the threshold values for the resistance variation rate(K) and the moment(t).Experimental and error analysis results demonstrate the efficacy of this innovative method in discharge stage determination, with a maximum mean square deviation of Scrless than 1.761. 展开更多
关键词 discharge underwater discharge stage identification impedance characteristics strong tracking filter
下载PDF
Collaborative Charging Scheduling in Wireless Charging Sensor Networks
20
作者 Qiuyang Wang Zhen Xu Lei Yang 《Computers, Materials & Continua》 SCIE EI 2024年第4期1613-1630,共18页
Wireless sensor networks (WSNs) have the trouble of limited battery power, and wireless charging provides apromising solution to this problem, which is not easily affected by the external environment. In this paper, w... Wireless sensor networks (WSNs) have the trouble of limited battery power, and wireless charging provides apromising solution to this problem, which is not easily affected by the external environment. In this paper, we studythe recharging of sensors in wireless rechargeable sensor networks (WRSNs) by scheduling two mobile chargers(MCs) to collaboratively charge sensors. We first formulate a novel sensor charging scheduling problem with theobjective of maximizing the number of surviving sensors, and further propose a collaborative charging schedulingalgorithm(CCSA) for WRSNs. In the scheme, the sensors are divided into important sensors and ordinary sensors.TwoMCs can adaptively collaboratively charge the sensors based on the energy limit ofMCs and the energy demandof sensors. Finally, we conducted comparative simulations. The simulation results show that the proposed algorithmcan effectively reduce the death rate of the sensor. The proposed algorithm provides a solution to the uncertaintyof node charging tasks and the collaborative challenges posed by multiple MCs in practical scenarios. 展开更多
关键词 Wireless rechargeable sensor network mobile charger collaborative charging adaptive charging
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部