期刊文献+
共找到1,123篇文章
< 1 2 57 >
每页显示 20 50 100
Backstepping Sliding Mode Control Based on Extended State Observer for Hydraulic Servo System 被引量:1
1
作者 Zhenshuai Wan Yu Fu +1 位作者 Chong Liu Longwang Yue 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3565-3581,共17页
Hydraulic servo system plays an important role in industrial fields due to the advantages of high response,small size-to-power ratio and large driving force.However,inherent nonlinear behaviors and modeling uncertaint... Hydraulic servo system plays an important role in industrial fields due to the advantages of high response,small size-to-power ratio and large driving force.However,inherent nonlinear behaviors and modeling uncertainties are the main obstacles for hydraulic servo system to achieve high tracking perfor-mance.To deal with these difficulties,this paper presents a backstepping sliding mode controller to improve the dynamic tracking performance and anti-interfer-ence ability.For this purpose,the nonlinear dynamic model is firstly established,where the nonlinear behaviors and modeling uncertainties are lumped as one term.Then,the extended state observer is introduced to estimate the lumped distur-bance.The system stability is proved by using the Lyapunov stability theorem.Finally,comparative simulation and experimental are conducted on a hydraulic servo system platform to verify the efficiency of the proposed control scheme. 展开更多
关键词 Hydraulic servo system nonlinear behaviors modeling uncertainties backstepping control sliding mode control extended state observer
下载PDF
Robust design of sliding mode control for airship trajectory tracking with uncertainty and disturbance estimation
2
作者 WASIM Muhammad ALI Ahsan +2 位作者 CHOUDHRY Mohammad Ahmad SHAIKH Inam Ul Hasan SALEEM Faisal 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期242-258,共17页
The robotic airship can provide a promising aerostatic platform for many potential applications.These applications require a precise autonomous trajectory tracking control for airship.Airship has a nonlinear and uncer... The robotic airship can provide a promising aerostatic platform for many potential applications.These applications require a precise autonomous trajectory tracking control for airship.Airship has a nonlinear and uncertain dynamics.It is prone to wind disturbances that offer a challenge for a trajectory tracking control design.This paper addresses the airship trajectory tracking problem having time varying reference path.A lumped parameter estimation approach under model uncertainties and wind disturbances is opted against distributed parameters.It uses extended Kalman filter(EKF)for uncertainty and disturbance estimation.The estimated parameters are used by sliding mode controller(SMC)for ultimate control of airship trajectory tracking.This comprehensive algorithm,EKF based SMC(ESMC),is used as a robust solution to track airship trajectory.The proposed estimator provides the estimates of wind disturbances as well as model uncertainty due to the mass matrix variations and aerodynamic model inaccuracies.The stability and convergence of the proposed method are investigated using the Lyapunov stability analysis.The simulation results show that the proposed method efficiently tracks the desired trajectory.The method solves the stability,convergence,and chattering problem of SMC under model uncertainties and wind disturbances. 展开更多
关键词 AIRSHIP chattering extended Kalman filter(EKF) model uncertainties estimation sliding mode controller(SMC)
下载PDF
Chattering analysis for discrete sliding mode control ofdistributed control systems 被引量:4
3
作者 litong ren shousheng xie +2 位作者 yu zhang jingbo peng ledi zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第5期1096-1107,共12页
The chattering characteristic of sliding mode control isanalyzed when it is applied in distributed control systems (DCSs).For a DCS with random time delay and packet dropout, a discreteswitching system model with ti... The chattering characteristic of sliding mode control isanalyzed when it is applied in distributed control systems (DCSs).For a DCS with random time delay and packet dropout, a discreteswitching system model with time varying sampling period isconstructed based on the time delay system method. The reachinglaw based sliding mode controller is applied in the proposedsystem. The exponential stability condition in the form of linearmatrix inequality is figured out based on the multi-Lyaponov functionmethod. Then, the chattering characteristic is analyzed for theswitching system, and a chattering region related with time varyingsampling period and external disturbance is proposed. Finally, numericalexamples are given to illustrate the validity of the analysisresult. 展开更多
关键词 distributed control system sliding mode control switching system chattering analysis.
下载PDF
An Energy Efficient Control Strategy for Electric Vehicle Driven by In-Wheel-Motors Based on Discrete Adaptive Sliding Mode Control 被引量:1
4
作者 Han Zhang Changzhi Zhou +1 位作者 Chunyan Wang Wanzhong Zhao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期302-313,共12页
This paper presents an energy-efficient control strategy for electric vehicles(EVs)driven by in-wheel-motors(IWMs)based on discrete adaptive sliding mode control(DASMC).The nonlinear vehicle model,tire model and IWM m... This paper presents an energy-efficient control strategy for electric vehicles(EVs)driven by in-wheel-motors(IWMs)based on discrete adaptive sliding mode control(DASMC).The nonlinear vehicle model,tire model and IWM model are established at first to represent the operation mechanism of the whole system.Based on the modeling,two virtual control variables are used to represent the longitudinal and yaw control efforts to coordinate the vehicle motion control.Then DASMC method is applied to calculate the required total driving torque and yaw moment,which can improve the tracking performance as well as the system robustness.According to the vehicle nonlinear model,the additional yaw moment can be expressed as a function of longitudinal and lateral tire forces.For further control scheme development,a tire force estimator using an unscented Kalman filter is designed to estimate real-time tire forces.On these bases,energy efficient torque allocation method is developed to distribute the total driving torque and differential torque to each IWM,considering the motor energy consumption,the tire slip energy consumption,and the brake energy~?recovery.Simulation results of the proposed control strategy using the co-platform of Matlab/Simulink and CarSim way. 展开更多
关键词 Electric vehicle Energy optimization Motion control discrete adaptive sliding mode control
下载PDF
FUZZY GLOBAL SLIDING MODE CONTROL BASED ON GENETIC ALGORITHM AND ITS APPLICATION FOR FLIGHT SIMULATOR SERVO SYSTEM 被引量:14
5
作者 LIU Jinkun HE Yuzhu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第3期13-17,共5页
To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditio... To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditions of sliding mode controller(SMC), and genetic algorithm (GA) is used to optimize scaling factor of the switching gain, thus the switch chattering of SMC can be alleviated. Moreover, global sliding mode is realized by designing an exponential dynamic sliding surface. Simulation and real-time application for flight simulator servo system with Lugre friction are given to indicate that the proposed controller can guarantee high robust performance all the time and can alleviate chattering phenomenon effectively. 展开更多
关键词 sliding mode control chattering free Fuzzy control Genetic algorithm Flight simulator
下载PDF
Sliding Mode Controller Design for Position and Speed Control of Flight Simulator Servo System with Large Friction 被引量:21
6
作者 Liu Jinkun & Er LianjieAutomatic Control Department, Beijing University of Aeronautics and Astronautics, Beijing 100083, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第3期59-62,共4页
Flight simulator is an important device and a typical high-performance position and speed servo system used in the hardware-in-the-loop simulation of flight control system. Friction is the main nonlinear resistance in... Flight simulator is an important device and a typical high-performance position and speed servo system used in the hardware-in-the-loop simulation of flight control system. Friction is the main nonlinear resistance in the flight simulator servo system, especially in a low-speed state. Based on the description of dynamic and static models of a nonlinear Stribeck friction model, this paper puts forward sliding mode controller to overcome the friction, whose stability is 展开更多
关键词 sliding mode control Flight simulator servo system Friction model.
下载PDF
Sliding Mode Variable Structure Control for Visual Servoing System 被引量:5
7
作者 Fei Li Hua-Long Xie 《International Journal of Automation and computing》 EI 2010年第3期317-323,共7页
A visual servoing tracking controller is proposed based on the sliding mode control theory in order to achieve strong robustness against parameter variations and external disturbances. A sliding plane with time delay ... A visual servoing tracking controller is proposed based on the sliding mode control theory in order to achieve strong robustness against parameter variations and external disturbances. A sliding plane with time delay compensation is presented by the pre-estimate of states. To reduce the chattering of the sliding mode controller, a modified exponential reaching law and hyperbolic tangent function are applied to the design of visual controller and robot joint controller. Simulation results show that the visual servoing control scheme is robust and has good tracking performance. 展开更多
关键词 Visual servoing sliding mode control variable structure control reaching law time delay.
下载PDF
Delay Compensation Observer with Sliding Mode Controller for Rotary Electro-hydraulic Servo System 被引量:1
8
作者 ZAKARYA Omar KHALID Hussein +1 位作者 WANG Xingsong ORELAJA Olusyi Adwale 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第S01期49-56,共8页
The hip’s lower limb exoskeleton essential and most important function is to support human’s payload as well as to enhance and assist human’s motion. It utilizes an electro-hydraulic servo manipulator which is requ... The hip’s lower limb exoskeleton essential and most important function is to support human’s payload as well as to enhance and assist human’s motion. It utilizes an electro-hydraulic servo manipulator which is required to achieve precise trajectory tracking and positioning operations. Nevertheless,these tasks require precise and robust control,which is very difficult to attain due to the inherent nonlinear dynamic behavior of the electro-hydraulic system caused by flow-pressure characteristics and fluid volume control variations of the servo valve. The sliding mode controller(SMC)is a widely used nonlinear robust controller,yet uncertainties and delay in the output degrade the closed-loop system performance and cause system instability. This work proposes a robust controller scheme that counts for the output delay and the inherent parameter uncertainties. Namely,a sliding mode controller enhanced by time-delay compensating observer for a typical electro-hydraulic servo system is adapted. SMC is utilized for its robustness against servo system parameters’ uncertainty whereas a time-delay observer estimates the variable states of the controller(velocity and acceleration). The main contribution of this paper is improving on the closed loop performance of the electro hydraulic servo system and mitigating the delay time effects. Simulation results prove the robustness of this controller,which forces the position to track the desired path regardless of the changes of the amount of transport delay of the system’s states. The performance of the proposed controller is validated by repeating the simulation analysis while varying the amount of delay time. 展开更多
关键词 sliding mode controller rotary electro-hydraulic servo system delay compensating observer transport delay
下载PDF
Variable structure control with sliding mode prediction for discrete-time nonlinear systems 被引量:4
9
作者 Lingfei XIAO Hongye SU Xiaoyu ZHANG Jian CHU 《控制理论与应用(英文版)》 EI 2006年第2期140-146,共7页
A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining... A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining feedback correction and receding horizon optimization methods which are extensively applied on predictive control strategy, a discrete-time variable structure control law is constructed. The closed-loop systems are proved to have robustness to uncertainties with unspecified boundaries. Numerical simulation and pendulum experiment results illustrate that the closed-loop systems possess desired performance, such as strong robustness, fast convergence and chattering elimination. 展开更多
关键词 Variable structure control sliding mode prediction discrete-time nonlinear system Pendulum experiment
下载PDF
Robust Sliding Mode Control for Nonlinear Discrete-Time Delayed Systems Based on Neural Network 被引量:4
10
作者 Vishal Goyal Vinay Kumar Deolia Tripti Nath Sharma 《Intelligent Control and Automation》 2015年第1期75-83,共9页
This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional th... This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional theory into the sliding-mode technique is used and a neural-network based sliding mode control scheme is proposed. Because of the novality of Chebyshev Neural Networks (CNNs), that it requires much less computation time as compare to multi layer neural network (MLNN), is preferred to approximate the unknown system functions. By means of linear matrix inequalities, a sufficient condition is derived to ensure the asymptotic stability such that the sliding mode dynamics is restricted to the defined sliding surface. The proposed sliding mode control technique guarantees the system state trajectory to the designed sliding surface. Finally, simulation results illustrate the main characteristics and performance of the proposed approach. 展开更多
关键词 discrete-TIME NONLINEAR systems LYAPUNOV-KRASOVSKII Functional Linear Matrix Inequality (LMI) sliding mode control (SMC) CHEBYSHEV Neural Networks (CNNs)
下载PDF
Coordinating optimization-based sliding mode variable structure control for electro-hydraulic servo system
11
作者 Yong YANG An LUO Hua HAN 《控制理论与应用(英文版)》 EI 2006年第2期168-174,共7页
A sliding mode variable structure control (SMVSC) based on a coordinating optimization algorithm has been developed. Steady state error and control switching frequency are used to constitute the system performance i... A sliding mode variable structure control (SMVSC) based on a coordinating optimization algorithm has been developed. Steady state error and control switching frequency are used to constitute the system performance indexes in the coordinating optimization, while the tuning rate of boundary layer width (BLW) is employed as the optimization parameter. Based on the mathematical relationship between the BLW and steady-state error, an optimized BLW tuning rate is added to the nonlinear control term of SMVSC. Simulation experiment results applied to the positioning control of an electro-hydraulic servo system show the comprehensive superiority in dynamical and static state performance by using the proposed controller is better than that by using SMVSC without optimized BLW tuning rate. This succeeds in coordinately considering both chattering reduction and high-precision control realization in SMVSC. 展开更多
关键词 sliding mode variable structure control(SMVSC) Varying boundary layer chattering reduction Steady-state performance Coordinating optimization(CO) Electro-hydraulic servo system (EHSS)
下载PDF
Design of fuzzy sliding mode controller for SISO discrete-time systems
12
作者 YangMI YuanweiJING 《控制理论与应用(英文版)》 EI 2004年第3期253-258,共6页
According to a class of nonlinear SISO discrete systems, the fiizzy sliding mode control problem is considered. Based on Takagi-Sugeno fuzzy model method, a fuzzy model is designed to describe the local dynamic perfor... According to a class of nonlinear SISO discrete systems, the fiizzy sliding mode control problem is considered. Based on Takagi-Sugeno fuzzy model method, a fuzzy model is designed to describe the local dynamic performance of the given nonlinear systems. By using the sliding mode control approach, the global controller is constructed by integrating all the local state controllers and the global supervisory sliding mode controller. The tracking problem can be easily dealt with by taking advantage of the combined controller,and the robustness performance is improved finally. A simulation example is given to show the effectiveness and feasibility of the method proposed. 展开更多
关键词 Fuzzy sliding mode controller Nonlinear discrete systems Takagi-Sugeno model
下载PDF
Robust sliding mode control for uncertain discrete time systems
13
作者 瞿少成 《Journal of Chongqing University》 CAS 2003年第2期51-54,共4页
A novel variable structure control (VSC) strategy with a dynamic disturbance compensator based on the reaching law for a class of uncertain discrete systems is presented. The robust stability to disturbance and the sy... A novel variable structure control (VSC) strategy with a dynamic disturbance compensator based on the reaching law for a class of uncertain discrete systems is presented. The robust stability to disturbance and the system dynamics in the vicinity of the switching plane are studied. A measure of the uncertain parameters and external disturbance is obtained through delaying every sampling time. Theoretical analysis and experimental simulation results demonstrate that the dynamic performance and robustness of the closed-loop system are improved effectively. 展开更多
关键词 discrete time systems sliding mode control reaching law ROBUSTNESS
下载PDF
Discrete Sliding Mode Control of an Input-output System with Stochastic Disturbance
14
作者 CAI Su-fen ZHANG Zhi-ping YIN Zeng-gang 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2006年第3期423-433,共11页
This paper presents the discrete adaptive sliding mode control of input-output non-minimum phase system in the presence of the stochastic disturbance. The non-minimum phase system can be transformed into a minimum pha... This paper presents the discrete adaptive sliding mode control of input-output non-minimum phase system in the presence of the stochastic disturbance. The non-minimum phase system can be transformed into a minimum phase system by a operator. According to the minimum phase system, the controller and the adaptive algorithm we designed ensures the stability of system and holds that the mean-square deviation from the sliding surface is minimized. 展开更多
关键词 input-output system mean-square deviation the discrete adaptive sliding mode control
下载PDF
An Output Tracking Integrated Discrete PID-based Sliding Mode Control on SISO Systems
15
作者 Yu Cao Xiongbiao Chen 《Journal of Mechanics Engineering and Automation》 2015年第3期143-152,共10页
SMC (sliding mode control) has been widely employed to compensate for the system uncertainty and disturbance. However, the chattering problem, caused by the discontinuous characteristic of switching function used in... SMC (sliding mode control) has been widely employed to compensate for the system uncertainty and disturbance. However, the chattering problem, caused by the discontinuous characteristic of switching function used in traditional SMC, greatly deteriorates the performance of SMC and has become the main limitation for its applications. Also, implementing the SMC in digital systems could make it even worse due to the limited sampling time. Moreover, as a state tracking control scheme, traditional SMC cannot be employed in the applications where the system states are not available. To alleviate these problems, the paper presents the development of a novel control method, so called "the output tracking integrated discrete PID (proportional-integral-derivative)-based SMC" for the S1SO (single-input-single-output) system, along with the controller design approaches (i.e., the traditional SMC design approach and the model reference approach). Without the need of system states, this novel method allows for eliminating chattering problem and the steady state error that may exists in such control methods as the continuous PID-based SMC. In order to demonstrate the effectiveness of the developed method, experiments were carried out on a commercially available piezoelectric actuator with varying sampling times, as compared to the continuous P1D-based SMC. The results illustrate that the tracking performance with the proposed method is much better than the continuous PID-based SMC. 展开更多
关键词 discrete P1D SISO sliding mode control.
下载PDF
Adaptive Backstepping Slide Mode Control of Pneumatic Position Servo System 被引量:12
16
作者 REN Haipeng FAN Juntao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第5期1003-1009,共7页
With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potentia... With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potential in many fields. However, most existing control methods with high tracking performance need to know the model information and to use pressure sensor. This limits the application of the pneumatic servo system. An adaptive backstepping slide mode control method is proposed for pneumatic position servo system. The proposed method designs adaptive slide mode controller using backstepping design technique. The controller parameter adaptive law is derived from Lyapunov analysis to guarantee the stability of the system. A theorem is testified to show that the state of closed-loop system is uniformly bounded, and the closed-loop system is stable. The advantages of the proposed method include that system dynamic model parameters are not required for the controller design, uncertain parameters bounds are not need, and the bulk and expensive pressure sensor is not needed as well. Experimental performance, as compared with some existing methods. results show that the designed controller can achieve better tracking 展开更多
关键词 pneumatic position servo system adaptive backstepping design slide mode control uncertain parameter tracking accuracy
下载PDF
Disturbance observer based time-varying sliding mode control for uncertain mechanical system 被引量:12
17
作者 Binglong Cong Xiangdong Liu Zhen Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期108-118,共11页
It is now well known that the time-varying sliding mode control (TVSMC) is characterized by its global robustness against matched model uncertainties and disturbances. The accurate tracking problem of the mechanical... It is now well known that the time-varying sliding mode control (TVSMC) is characterized by its global robustness against matched model uncertainties and disturbances. The accurate tracking problem of the mechanical system in the presence of the parametric uncertainty and external disturbance is addressed in the TVSMC framework. Firstly, an exponential TVSMC algorithm is designed and the main features are analyzed. Especially, the control parameter is obtained by solving an optimal problem. Subsequently, the global chattering problem in TVSMC is considered. To reduce the static error resulting from the continuous TVSMC algorithm, a disturbance observer based time-varying sliding mode control (DOTVSMC) algorithm is presented. The detailed design principle and the stability of the closed-loop system under the composite controller are provided. Simulation results verify the effectiveness of the proposed algorithm. 展开更多
关键词 mechanical system time-varying sliding mode control (TVSMC) global sliding phase global chattering disturbance observer.
下载PDF
Backstepping sliding mode control for uncertain strict-feedback nonlinear systems using neural-network-based adaptive gain scheduling 被引量:12
18
作者 YANG Yueneng YAN Ye 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期580-586,共7页
A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain st... A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain strict-feedback nonlinear systems is formulated. Second, the detailed design of NNAGSBSMC is described. The sliding mode control(SMC) law is designed to track a referenced output via backstepping technique.To decrease chattering result from SMC, a radial basis function neural network(RBFNN) is employed to construct the NNAGSBSMC to facilitate adaptive gain scheduling, in which the gains are scheduled adaptively via neural network(NN), with sliding surface and its differential as NN inputs and the gains as NN outputs. Finally, the verification example is given to show the effectiveness and robustness of the proposed approach. Contrasting simulation results indicate that the NNAGS-BSMC decreases the chattering effectively and has better control performance against the BSMC. 展开更多
关键词 backstepping control sliding mode control(SMC) neural network(NN) strict-feedback system chattering decrease
下载PDF
Fuzzy robust sliding mode control of a class of uncertain systems 被引量:6
19
作者 REN Li-tong 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第9期2296-2304,共9页
Aiming at a class of systems under parameter perturbations and unknown external disturbances, a method of fuzzy robust sliding mode control was proposed. Firstly, an integral sliding mode surface containing state feed... Aiming at a class of systems under parameter perturbations and unknown external disturbances, a method of fuzzy robust sliding mode control was proposed. Firstly, an integral sliding mode surface containing state feedback item was designed based on robust H∞ control theory. The robust state feedback control was utilized to substitute for the equivalent control of the traditional sliding mode control. Thus the robustness of systems sliding mode motion was improved even the initial states were unknown. Furthermore, when the upper bound of disturbance was unknown, the switching control logic was difficult to design, and the drawbacks of chattering in sliding mode control should also be considered simultaneously. To solve the above-mentioned problems, the fuzzy nonlinear method was applied to approximate the switching control term. Based on the Lyapunov stability theory, the parameter adaptive law which could guarantee the system stability was devised. The proposed control strategy could reduce the system chattering effectively. And the control input would not switch sharply, which improved the practicality of the sliding mode controller. Finally, simulation was conducted on system with parameter perturbations and unknown external disturbances. The result shows that the proposed method could enhance the approaching motion performance effectively. The chattering phenomenon is weakened, and the system possesses stronger robustness against parameter perturbations and external disturbances. 展开更多
关键词 uncertain systems robust control fuzzy sliding mode control chattering
下载PDF
Fixed time integral sliding mode controller and its application to the suppression of chaotic oscillation in power system 被引量:9
20
作者 Jiang-Bin Wang Chong-Xin Liu +1 位作者 Yan Wang Guang-Chao Zheng 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第7期234-241,共8页
Chattering phenomenon and singularity are still the main problems that hinder the practical application of sliding mode control. In this paper, a fixed time integral sliding mode controller is designed based on fixed ... Chattering phenomenon and singularity are still the main problems that hinder the practical application of sliding mode control. In this paper, a fixed time integral sliding mode controller is designed based on fixed time stability theory, which ensures precise convergence of the state variables of controlled system, and overcomes the drawback of convergence time growing unboundedly as the initial value increases in finite time controller. It makes the controlled system converge to the control objective within a fixed time bounded by a constant as the initial value grows, and convergence time can be changed by adjusting parameters of controllers properly. Compared with other fixed time controllers, the fixed time integral sliding mode controller proposed in this paper achieves chattering-free control, and integral expression is used to avoid singularity generated by derivation. Finally, the controller is used to stabilize four-order chaotic power system. The results demonstrate that the controller realizes the non-singular chattering-free control of chaotic oscillation in the power system and guarantees the fixed time convergence of state variables, which shows its higher superiority than other finite time controllers. 展开更多
关键词 fixed time stability integral sliding mode control four-order power system chaotic oscillation non-singular chattering-free
下载PDF
上一页 1 2 57 下一页 到第
使用帮助 返回顶部