NizP supported catalysts exhibit high catalytic activities in hydrogenation reaction,of which the particle sizes of Ni_(2)P active phases are the key influential factor.This research focus on the effect of chelators o...NizP supported catalysts exhibit high catalytic activities in hydrogenation reaction,of which the particle sizes of Ni_(2)P active phases are the key influential factor.This research focus on the effect of chelators on the size of Ni_(2)P particles over wrinkle silica nanoparticles(WSNs)by introducing chelating agents EDTA and NTA during impregnation process.The characterization results show that chelators modified cata-lysts possess smaller size of Ni_(2)P particles than the unmodified Ni_(2)P catalysts.Among all the synthesized catalysts,the EDTA modified Ni_(2)PE(1.5)/WSNs catalyst possesses smallest average particle size of Ni_(2)P,only 2.6 nm.Moreover,the Ni_(2)P catalysts with the assistance of EDTA exhibits better catalytic activity than that of NTA under high reaction temperature,which can be ascribed to the strong bonding between EDTA and Ni.And the EDTA modified Ni_(2)PE(1.5)/WSNs catalyst shows highest hydrogenation ability,almost reaching 100%decalin selectivity.展开更多
Polyacrylamide-urea-sulfanilamide(PUS) was prepared as a novel heavy metal ions chelator and successfully used to simultaneously remove heavy metals from wastewater effluents.The effects of reaction parameters(sodi...Polyacrylamide-urea-sulfanilamide(PUS) was prepared as a novel heavy metal ions chelator and successfully used to simultaneously remove heavy metals from wastewater effluents.The effects of reaction parameters(sodium hydroxide,material ratio,temprature and contact time) were monitored to specify the best synthesis conditions.PUS was chemically characterized by means of infrared spectroscopy(FTIR) and ultraviolet-visible(UV-Vis).The simultaneous chelation performance of PUS towards selected heavy metals ions,Ni2+,Cu2+,Pb2+,Zn2+,Cd2+ was discussed,showing that Ni2+,Cu2+,Pb2+,Zn2+ could be better chelated.It is indicated that the synthesized PUS is a potential remediation material when used for the treatment of wastewater containing metal ions.展开更多
This study investigated the potential utility of poly (sodium N-undecanoyl-L-leucyl-valinate) (poly-L-SULV), poly (sodium N-undecanoyl-L-leucyl-alanate) (poly-L-SULA), and poly (sodium N-undecanoyl-glycinate) (poly-SU...This study investigated the potential utility of poly (sodium N-undecanoyl-L-leucyl-valinate) (poly-L-SULV), poly (sodium N-undecanoyl-L-leucyl-alanate) (poly-L-SULA), and poly (sodium N-undecanoyl-glycinate) (poly-SUG) molecular micelles (MMs) as chelators for heavy metal (Cd, Cr, Cu, Co, and Ni) ion remediation of kaolinite clay using D-optimum experimental design. D-optimum experimental design was employed to simultaneously investigate the influence of design variables such as the buffer pH, chelator concentration, and centrifuge speed to evaluate the optimum conditions and to reduce the time and cost of metal ion remediation. The partition coefficients of the metal ion concentrations between the kaolinite clay and chelator equilibrium were also evaluated. In addition, the influence of metal ion concentrations on the remediation capability of the chelators was evaluated by conducting remediation studies at four different (10 ppm, 40 ppm, 60 ppm, and 80 ppm) metal ion concentrations. In general, the results of the remediation efficiency and partition coefficients obtained in this study are highly metal ion dependent and also dependent upon the chelator used for the remediation. Specifically, the remediation efficiency of the molecular micelles was found to be comparable to or better than the corresponding remediation efficiency obtained when SDS or EDTA was used for the remediation. However, at optimum conditions, poly-SULV and poly-L-SULA molecular micelle chelators demonstrated superior remediation efficiencies for Cr, with remediation efficiency of 99.9 ± 8.7% and 99.1 ± 0.7%, respectively.展开更多
Desferrioxamine (DFO), deferiprone (DFP) and deferasirox (DFX) are promising effective iron chelators for the treatment of iron overload in b-thalassemia patients;nonetheless, their side effects have also been reporte...Desferrioxamine (DFO), deferiprone (DFP) and deferasirox (DFX) are promising effective iron chelators for the treatment of iron overload in b-thalassemia patients;nonetheless, their side effects have also been reported. 3-Hydroxypyridinone derivatives are being developed as a safer new chelator and in combined chelation therapy. We evaluated the iron-chelating activity of 1-(N-acetyl-6-aminohexyl)-3-hydroxypyridin-4-one (CM1) in iron-loaded C57BL6 mice. The feeding of a ferrocene-supplemented diet (Fe diet) to mice resulted in iron overload, detectable plasma nontransferrin-bound iron (NTBI) and labile plasma iron (LPI), and increases of red cell membrane iron, plasma malondialdehyde (MDA) and excessive tissue iron deposits. Like DFP, the CM1 lowered the levels of the membrane non-heme iron, the NTBI and LPI (p < 0.05) and the MDA after 3 months of treatment. Administration of the Fe diet and the Fe diet along with the chelators did not change the morphology of the liver and heart. Numerous iron accumulations were observed in the liver and spleen tissues of the Fe dietfed mice, whereas the CM1 reduced such iron deposition. Thus, 1-(N-acetyl-6-aminohexyl)-3-hydro- xypyridin-4-one (CM1) can be considered a candidate bidentate oral iron chelator and is effective in the removal of toxic irons in blood compartment and tissues. The effectiveness and toxicity of the CM1 need to be investigated extensively in thalassemia mice and patients with iron overload.展开更多
Despite its various vital roles in the different body’s metabolisms,iron may have a hazardous impact on health when it exceeds its normal values.Iron overload is triggered by many genetic and behavioral factors.Furth...Despite its various vital roles in the different body’s metabolisms,iron may have a hazardous impact on health when it exceeds its normal values.Iron overload is triggered by many genetic and behavioral factors.Furthermore,excessive iron levels have also been observed in many pathologies such as Alzheimer’s,Parkinson’s,cardiovascular and some cancerous diseases.This paper describes a set of natural iron chelators as an effective and a safe orthomolecular approach in chelating iron.Orthomolecular medicine is based on providing patients with nutritional supplementation at high doses to treat and prevent diseases.This paper describes the properties of a set of flavonoids and phenolic acids such as curcumin and ferulic acid that can be administered as supplements to patients suffering from iron overload since they are classified as strong chelators.Those natural iron chelators’supplements are mainly extracted from fruits,vegetables,and plants.As chelators,they are able to bind effectively to iron,inhibit the production of reactive oxygen species,and reduce the levels of oxidative stress.They can also play an effective therapeutic role in the treatment of neurodegenerative,cardiovascular,diabetic,and cancerous diseases thanks to their iron chelation,antioxidant,and anti-inflammatory properties.展开更多
Inflammatory responses,manifested in excessive oxidative stress and microglia overactivation,together with metal ion-triggered amyloid-beta(Aβ)deposition,are critical hallmarks of Alzheimer’s disease(AD).The intrica...Inflammatory responses,manifested in excessive oxidative stress and microglia overactivation,together with metal ion-triggered amyloid-beta(Aβ)deposition,are critical hallmarks of Alzheimer’s disease(AD).The intricate pathogenesis causes severe impairment of neurons,which,in turn,exacerbates Aβaggregation and facilitates AD progression.Herein,multifunctional melanin-like metal ion chelators and neuroinflammation regulators(named PDA@K)were constructed for targeted treatment of AD.In this platform,intrinsically bioactive material polydopamine nanoparticles(PDA)with potent metal ion chelating and ROS scavenging effects were decorated with the KLVFF peptide,endowing the system with the capacity of enhanced pathological blood–brain barrier(BBB)crossing and lesion site accumulation via Aβhitchhiking.In vitro and in vivo experiment revealed that PDA@K had high affinity toward Aβand were able to hitch a ride on Aβto achieve increased pathological BBB crossing.The engineered PDA@K effectively mitigated Aβaggregate and alleviated neuroinflammation.展开更多
The role of copper element has been an increasingly relevant topic in recent years in the fields of human and animal health, for both the study of new drugs and innovative food and feed supplements. This metal plays a...The role of copper element has been an increasingly relevant topic in recent years in the fields of human and animal health, for both the study of new drugs and innovative food and feed supplements. This metal plays an important role in the central nervous system, where it is associated with glutamatergic signaling, and it is widely involved in inflammatory processes. Thus, diseases involving copper(Ⅱ) dyshomeostasis often have neurological symptoms, as exemplified by Alzheimer's and other diseases(such as Parkinson's and Wilson's diseases). Moreover, imbalanced copper ion concentrations have also been associated with diabetes and certain types of cancer, including glioma. In this paper, we propose a comprehensive overview of recent results that show the importance of these metal ions in several pathologies, mainly Alzheimer's disease, through the lens of the development and use of copper chelators as research compounds and potential therapeutics if included in multi-target hybrid drugs. Seeing how copper homeostasis is important for the well-being of animals as well as humans, we shortly describe the state of the art regarding the effects of copper and its chelators in agriculture, livestock rearing, and aquaculture, as ingredients for the formulation of feed supplements as well as to prevent the effects of pollution on animal productions.展开更多
BACKGROUND Acute liver failure(ALF)may be the first and most dramatic presentation of Wilson’s disease(WD).ALF due to WD(WD-ALF)is difficult to distinguish from other causes of liver disease and is a clear indication...BACKGROUND Acute liver failure(ALF)may be the first and most dramatic presentation of Wilson’s disease(WD).ALF due to WD(WD-ALF)is difficult to distinguish from other causes of liver disease and is a clear indication for liver transplantation.There is no firm recommendation on specific and supportive medical treatment for this condition.AIM To critically evaluate the diagnostic and therapeutic management of WD-ALF patients in order to improve their survival with native liver.METHODS A retrospective analysis of patients with WD-ALF was conducted in two pediatric liver units from 2018 to 2023.RESULTS During the study period,16 children(9 males)received a diagnosis of WD and 2 of them presented with ALF.The first was successfully treated with an unconventional combination of low doses of D-penicillamine and zinc plus steroids,and survived without liver transplant.The second,exclusively treated with supportive therapy,needed a hepatotransplant to overcome ALF.CONCLUSION Successful treatment of 1 WD-ALF patient with low-dose D-penicillamine and zinc plus steroids may provide new perspectives for management of this condition,which is currently only treated with liver transplantation.展开更多
BACKGROUND Wilson disease(WD)is a progressive,potentially fatal degenerative disease affecting the liver and central nervous system.Given its low prevalence,collecting data on large cohorts of patients with WD is chal...BACKGROUND Wilson disease(WD)is a progressive,potentially fatal degenerative disease affecting the liver and central nervous system.Given its low prevalence,collecting data on large cohorts of patients with WD is challenging.Comprehensive insur-ance claims databases provide powerful tools to collect retrospective data on large numbers of patients with rare diseases.AIM To describe patients with WD in the United States,their treatment and clinical outcome,using a large insurance claims database.METHODS This retrospective,longitudinal study was performed in the Clarivate Real-World Data Product database.All patients with≥2 claims associated with an Interna-tional Classification of Diseases 10(ICD-10)diagnostic code for WD(E83.01)between 2016 and 2021 were included and followed until death or study end.Patients were divided into two groups by whether or not they were documented to have received a specific treatment for WD.Clinical manifestations,hospital-isations,liver transplantation and death were documented.RESULTS Overall,5376 patients with an ICD-10 diagnostic code for WD were identified.The mean age at inclusion was 41.2 years and 52.0%were men.A specific WD treatment was documented for 885 patients(15.1%),although the number of patients taking zinc salts may be underestimated due to over the counter purchase.At inclusion,the mean age of patients with a documented treatment was 36.6±17.8 years vs 42.2±19.6 years in those without a documented treatment.During follow-up,273 patients(5.1%)died.Compared with the American general population,the standardised mortality ratio was 2.19.The proportion of patients with a documented WD-specific treatment who died during follow-up was 4.0%and the mean age at death 52.7 years.CONCLUSION Patients treated for WD in the United States had an excess early mortality compared with the American population.These findings indicate that there is a significant unmet need for effective treatment for WD in the United States.展开更多
This study aimed to characterize and identify calcium-chelating peptides from rabbit bone collagen and explore the underlying chelating mechanism.Collagen peptides and calcium were extracted from rabbit bone by instan...This study aimed to characterize and identify calcium-chelating peptides from rabbit bone collagen and explore the underlying chelating mechanism.Collagen peptides and calcium were extracted from rabbit bone by instant ejection steam explosion(ICSE)combined with enzymatic hydrolysis,followed by chelation reaction to prepare rabbit bone peptide-calcium chelate(RBCP-Ca).The chelating sites were further analyzed by liquid chromatography-tandem mass(LC-MS/MS)spectrometry while the chelating mechanism and binding modes were investigated.The structural characterization revealed that RBCP successfully chelated with calcium ions.Furthermore,LC-MS/MS analysis indicated that the binding sites included both acidic amino acids(Asp and Glu)and basic amino acids(Lys and Arg),Interestingly,three binding modes,namely Inter-Linking,Loop-Linking and Mono-Linking were for the first time found,while Inter-Linking mode accounted for the highest proportion(75.1%),suggesting that chelation of calcium ions frequently occurred between two peptides.Overall,this study provides a theoretical basis for the elucidation of chelation mechanism of calcium-chelating peptides.展开更多
BACKGROUND Irritable bowel syndrome(IBS)is one of the most frequent and debilitating conditions leading to gastroenterological referrals.However,recommended treatments remain limited,yielding only limited therapeutic ...BACKGROUND Irritable bowel syndrome(IBS)is one of the most frequent and debilitating conditions leading to gastroenterological referrals.However,recommended treatments remain limited,yielding only limited therapeutic gains.Chitin-glucan(CG)is a novel dietary prebiotic classically used in humans at a dosage of 1.5-3.0 g/d and is considered a safe food ingredient by the European Food Safety Authority.To provide an alternative approach to managing patients with IBS,we performed preclinical molecular,cellular,and animal studies to evaluate the role of chitin-glucan in the main pathophysiological mechanisms involved in IBS.AIM To evaluate the roles of CG in visceral analgesia,intestinal inflammation,barrier function,and to develop computational molecular models.METHODS Visceral pain was recorded through colorectal distension(CRD)in a model of long-lasting colon hypersensitivity induced by an intra-rectal administration of TNBS[15 milligrams(mg)/kilogram(kg)]in 33 Sprague-Dawley rats.Intracolonic pressure was regularly assessed during the 9 wk-experiment(weeks 0,3,5,and 7)in animals receiving CG(n=14)at a human equivalent dose(HED)of 1.5 g/d or 3.0 g/d and compared to negative control(tap water,n=11)and positive control(phloroglucinol at 1.5 g/d HED,n=8)groups.The anti-inflammatory effect of CG was evaluated using clinical and histological scores in 30 C57bl6 male mice with colitis induced by dextran sodium sulfate(DSS)administered in their drinking water during 14 d.HT-29 cells under basal conditions and after stimulation with lipopolysaccharide(LPS)were treated with CG to evaluate changes in pathways related to analgesia μ-opioid receptor(MOR),cannabinoid receptor 2(CB2),peroxisome proliferator-activated receptor alpha,inflammation[interleukin(IL)-10,IL-1b,and IL-8]and barrier function[mucin 2-5AC,claudin-2,zonula occludens(ZO)-1,ZO-2]using the real-time PCR method.Molecular modelling of CG,LPS,lipoteichoic acid(LTA),and phospholipomannan(PLM)was developed,and the ability of CG to chelate microbial pathogenic lipids was evaluated by docking and molecular dynamics simulations.Data were expressed as the mean±SEM.RESULTS Daily CG orally-administered to rats or mice was well tolerated without including diarrhea,visceral hypersensitivity,or inflammation,as evaluated at histological and molecular levels.In a model of CRD,CG at a dosage of 3 g/d HED significantly decreased visceral pain perception by 14%after 2 wk of administration(P<0.01)and reduced inflammation intensity by 50%,resulting in complete regeneration of the colonic mucosa in mice with DSS-induced colitis.To better reproduce the characteristics of visceral pain in patients with IBS,we then measured the therapeutic impact of CG in rats with TNBS-induced inflammation to long-lasting visceral hypersensitivity.CG at a dosage of 1.5 g/d HED decreased visceral pain perception by 20%five weeks after colitis induction(P<0.01).When the CG dosage was increased to 3.0 g/d HED,this analgesic effect surpassed that of the spasmolytic agent phloroglucinol,manifesting more rapidly within 3 wk and leading to a 50%inhibition of pain perception(P<0.0001).The underlying molecular mechanisms contributing to these analgesic and anti-inflammatory effects of CG involved,at least in part,a significant induction of MOR,CB2 receptor,and IL-10,as well as a significant decrease in pro-inflammatory cytokines IL-1b and IL-8.CG also significantly upregulated barrier-related genes including muc5AC,claudin-2,and ZO-2.Molecular modelling of CG revealed a new property of the molecule as a chelator of microbial pathogenic lipids,sequestering gram-negative LPS and gram-positive LTA bacterial toxins,as well as PLM in fungi at the lowesr energy conformations.CONCLUSION CG decreased visceral perception and intestinal inflammation through master gene regulation and direct binding of microbial products,suggesting that CG may constitute a new therapeutic strategy for patients with IBS or IBSlike symptoms.展开更多
An ultrafiltered low-molecular-weight preparation of chelating compounds was isolated from a wood-containing culture of the white-rot basidiomycete Coriolus versicolor. This preparation could chelate Fe3+ and reduce F...An ultrafiltered low-molecular-weight preparation of chelating compounds was isolated from a wood-containing culture of the white-rot basidiomycete Coriolus versicolor. This preparation could chelate Fe3+ and reduce Fe3+ to Fe2+, demonstrating that the substance may serve as a ferric chelator, oxygen-reducing agent, and redox-cycling molecule, which would include functioning as the electron transport carrier in Fenton reaction. Lignin was treated with the iron-binding chelator and the changes in structure were investigated by 1H-NMR, 13C-NMR, difference spectrum caused by ionization under alkaline conditions and nitrobenzene oxidation. The results indicated that the iron-binding chelator could destroy the β-O-4 bonds in etherified lignin units and insert phenolic hydroxyl groups. The low-molecular-weight chelator secreted by C. versicolor resulted in new phenolic substructures in the lignin polymer, making it susceptible to attack by laccase or manganese peroxidase. Thus, the synergic action of the iron-binding chelator and the lignocellulolytic enzymes made the substrate more acces- sible to degradation.展开更多
Mycosphazine A(1), a new iron(Ⅲ) chelator of coprogen-type siderophore, and mycosphamide A(2), a new cyclic amide benzoate, together with six known aryl amides(3-8), were isolated from the fermentation broth of the d...Mycosphazine A(1), a new iron(Ⅲ) chelator of coprogen-type siderophore, and mycosphamide A(2), a new cyclic amide benzoate, together with six known aryl amides(3-8), were isolated from the fermentation broth of the deep-sea-derived fungus Mycosphaerella sp. SCSIO z059. Alkaline hydrolysis of 1 afforded a new epimer of dimerum acid, mycosphazine B(1 a), and a new bi-fusarinine-type siderophore, mycosphazine C(1 b). The planar structures of the new compounds were elucidated by extensive spectroscopic data analysis. The absolute configurations of amino acid residues in 1 a and 1 b were determined by acid hydrolysis. And the absolute configuration of 2 was established by quantum chemical calculations of the electronic circular dichroism(ECD) spectra. Compound 1 is the first siderophore-Fe(Ⅲ) chelator incorporating both L-ornithine and D-ornithine unites. Compounds 3-8 were reported as natural products for the first time, and the 1 H and 13 C NMR data of 6 and 8 were assigned for the first time. Compounds 1 and 1 a could greatly promote the biofilm formation of bacterium Bacillus amyloliquefaciens with the rate of about 249% and 524% at concentration of 100 μg·mL-1, respectively.展开更多
Lead is a ubiquitous pollutant and Pb pollution is a global public health problem.Lead has been reported to induce multiple adverse effects,including reproductive toxicity,neurotoxicity,carcinogenicity,nephrotoxicity,...Lead is a ubiquitous pollutant and Pb pollution is a global public health problem.Lead has been reported to induce multiple adverse effects,including reproductive toxicity,neurotoxicity,carcinogenicity,nephrotoxicity,immunotoxicity,and hypertension[1].The traditional medical treatment available for Pb poisoning is chelation,which can save lives in individuals with very high blood Pb levels.The commonly used chelating agents include CaNa2EDTA and meso-2,3-dimercaptosuccinic acid.However,chelation therapy has strong short-term effects on the overall long-term management of Pb exposure.展开更多
Background Our previous studies demonstrated that divalent organic iron(Fe)proteinate sources with higher complexation or chelation strengths as expressed by the greater quotient of formation(Qf)values displayed highe...Background Our previous studies demonstrated that divalent organic iron(Fe)proteinate sources with higher complexation or chelation strengths as expressed by the greater quotient of formation(Qf)values displayed higher Fe bioavailabilities for broilers.Sodium iron ethylenediaminetetraacetate(NaFeEDTA)is a trivalent organic Fe source with the strongest chelating ligand EDTA.However,the bioavailability of Fe when administered as NaFeEDTA in broilers and other agricultural animals remains untested.Herein,the chemical characteristics of 12 NaFeEDTA products were determined.Of these,one feed grade NaFeEDTA(Qf=2.07×10^(8)),one food grade NaFeEDTA(Qf=3.31×10^(8)),and one Fe proteinate with an extremely strong chelation strength(Fe-Prot ES,Qf value=8,590)were selected.Their bioavailabilities relative to Fe sulfate(FeSO_(4)·7H_(2)O)for broilers fed with a conventional corn-soybean meal diet were evaluated during d 1 to 21 by investigating the effects of the above Fe sources and added Fe levels on the growth performance,hematological indices,Fe contents,activities and gene expressions of Fe-containing enzymes in various tissues of broilers.Results NaFeEDTA sources varied greatly in their chemical characteristics.Plasma Fe concentration(PI),transferrin saturation(TS),liver Fe content,succinate dehydrogenase(SDH)activities in liver,heart,and kidney,catalase(CAT)activity in liver,and SDH mRNA expressions in liver and kidney increased linearly(P<0.05)with increasing levels of Fe supplementation.However,differences among Fe sources were detected(P<0.05)only for PI,liver Fe content,CAT activity in liver,SDH activities in heart and kidney,and SDH mRNA expressions in liver and kidney.Based on slope ratios from multiple linear regressions of the above indices on daily dietary analyzed Fe intake,the average bioavailabilities of Fe-Prot ES,feed grade NaFeEDTA,and food grade NaFeEDTA relative to the inorganic FeSO_(4)·7H_(2)O(100%)for broilers were 139%,155%,and 166%,respectively.Conclusions The bioavailabilities of organic Fe sources relative to FeSO_(4)·7H_(2)O were closely related to their Qf values,and NaFeEDTA sources with higher Qf values showed higher Fe bioavailabilities for broilers fed with a conventional corn-soybean meal diet.展开更多
Glyphosate-based herbicides are widely used around the world, making it likely that most humans have significant exposure. Because of habitual exposure, there are concerns about toxicity including neurotoxicity that c...Glyphosate-based herbicides are widely used around the world, making it likely that most humans have significant exposure. Because of habitual exposure, there are concerns about toxicity including neurotoxicity that could result in neurological, psychiatric, or cognitive impairment. We recently found that a single injection of glyphosate inhibits long-term potentiation, a cellular model of learning and memory, in rat hippocampal slices dissected 1 day after injection, indicating that glyphosate-based herbicides can alter cognitive function. Glyphosate-based herbicides could adversely affect cognitive function either indirectly and/or directly. Indirectly, glyphosate could affect gut microbiota, and if dysbiosis results in endotoxemia(leaky gut), infiltrated bacterial by-products such as lipopolysaccharides could activate pro-inflammatory cascades. Glyphosate can also directly trigger pro-inflammatory cascades. Indeed, we observed that acute glyphosate exposure inhibits long-term potentiation in rat hippocampal slices. Interestingly, direct inhibition of long-term potentiation by glyphosate appears to be similar to that of lipopolysaccharides. There are several possible measures to control dysbiosis and neuroinflammation caused by glyphosate. Dietary intake of polyphenols, such as quercetin, which overcome the inhibitory effect of glyphosate on long-term potentiation, could be one effective strategy. The aim of this narrative review is to discuss possible mechanisms underlying neurotoxicity following glyphosate exposure as a means to identify potential treatments.展开更多
Aqueous zinc-ion batteries are promising due to inherent safety,low cost,low toxicity,and high volumetric capacity.However,issues of dendrites and side reactions between zinc metal anode and the electrolyte need to be...Aqueous zinc-ion batteries are promising due to inherent safety,low cost,low toxicity,and high volumetric capacity.However,issues of dendrites and side reactions between zinc metal anode and the electrolyte need to be solved for extended storage and cycle life.Here,we proposed that an electrolyte additive with an intermediate chelation strength of zinc ion—strong enough to exclude water molecules from the zinc metal-electrolyte interface and not too strong to cause a significant energy barrier for zinc ion dissociation—can benefit the electrochemical stability by suppressing hydrogen evolution reaction,overpotential growth,and den-drite formation.Penta-sodium diethylene-triaminepentaacetic acid salt was selected for such a purpose.It has a suitable chelating ability in aqueous solutions to adjust solvation sheath and can be readily polarized under electrical loading conditions to further improve the passivation.Zn||Zn symmetric cells can be stably operated over 3500 h at 1 mA cm^(-2).Zn||NH4V4O10 full cells with the additive show great cycling stability with 84.6%capacity retention after 500 cycles at 1 A g^(-1).Since the additive not only reduces H2 evolution and corrosion but also modifies Zn2+diffusion and deposition,highlyreversible Zn electrodes can be achieved as verified by the experimental results.Our work offers a practical approach to the logical design of reliable electrolytes for high-performance aqueous batteries.展开更多
Although some species that accumulate only cyanidin(Cy)in nature can produce blue flowers through iron ions,there has been no evidence of blue chrysanthemums being generated in this manner.This study revealed that fla...Although some species that accumulate only cyanidin(Cy)in nature can produce blue flowers through iron ions,there has been no evidence of blue chrysanthemums being generated in this manner.This study revealed that flavonoid extracts from the ray florets of the chrysanthemum cultivar‘Wandai Fengguang’turned blue when exposed to Fe^(3+).Samples that could turn blue were labeled as CB(Cy-determined blue flowers),while samples that did not turn blue were labeled as CN(Cy-determined non-blue flowers).After a series of experiments,a stable screening system was established using flavonoid extracts containing NaAc buffer at pH 5.5 and a total anthocyanin concentration(TAC)of 30 μmol·L^(-1),and the addition of Fe^(3+)from 0 to 0.25 μmol·L^(-1)allowed for the selection of five CB samples from 39 chrysanthemum cultivars.All five CB samples exhibited flower color phenotypes that belonged to Cluster-I with redness(a*)values ranging from 29.03 to 45.99,yellowness(b*)values from-11.31 to 3.77,and brightness(L*)values from 29.07 to 45.99.Additionally,the ratio of TAC to total luteolin concentration(TLC)was found to be a critical factor for distinguishing between CB and CN samples.To realize the desired blue hue in the flavonoid extracts with the participation of Fe^(3+),a TAC to TLC ratio of 2.25 and above is required.Moreover,the protoplasts and ray florets of CB samples that turned blue with the involvement of Fe^(2+)showed great potential for cultivating blue chrysanthemums through ferric-anthocyanin chelate.Overall,this study reveals that blue flowers can be cultivated through the increase in the iron ion concentration,combined with the accumulation of Cy.展开更多
Although Zn metal has been regarded as the most promising anode for aqueous batteries,its practical application is still restricted by side reactions and dendrite growth.Herein,an in-situ solid electrolyte interphase(...Although Zn metal has been regarded as the most promising anode for aqueous batteries,its practical application is still restricted by side reactions and dendrite growth.Herein,an in-situ solid electrolyte interphase(SEI)film formed on the interface of electrode/electrolyte during the plating/stripping of zinc anodes by introducing trace amounts of multidentate ligand sodium diethyldithiocarbamate(DDTC)additive into 1 M ZnSO_(4).The synergistic effect of in-situ solid electrolyte interphase forming and chelate effect endows Zn^(2+)with uniform and rapid interface-diffusion kinetics against dendrite growth and surface side reactions.As a result,the Zn anode in 1 M ZnSO_(4)+DDTC electrolytes displays an ultra-high coulombic efficiency of 99.5%and cycling stability(more than 2000 h),especially at high current density(more than 600 cycles at 40 mA cm^(-2)).Moreover,the Zn//MnO_(2)full cells in the ZnSO_(4)+DDTC electrolyte exhibit outstanding cyclic stability(with 98.6%capacity retention after 2000 cycles at 10 C).This electrode/electrolyte interfacial chemistry modulated strategy provides new insight into enhancing zinc anode stability for high-performance aqueous zinc batteries.展开更多
This review article explores the fundamental principles of modern endodontics with a focus on root canal cleaning and shaping.It reviews commonly used endodontic irrigant,namely sodium hypochlorite(NaOCl),herbal extra...This review article explores the fundamental principles of modern endodontics with a focus on root canal cleaning and shaping.It reviews commonly used endodontic irrigant,namely sodium hypochlorite(NaOCl),herbal extracts,chlorhexidine(CHX),and chelating agents,highlighting their properties,applications,and potential drawbacks.NaOCl,a key antimicrobial agent,demonstrates effectiveness against various microorganisms but poses challenges such as high cytotoxicity.Herbal extracts,gaining recognition in endodontics,present an alternative with potential advantages in preserving dentin integrity.CHX,known for its broad-spectrum antimicrobial activity,is discussed in both liquid and gel formulations,emphasizing its role in reducing smear layer formation and preserving hybrid layer durability.Chelating agents,specifically ethylenediaminetetraacetic acid and citric acid,play a vital role in removing the smear layer,enhancing dentin permeability,and facilitating the penetration of antimicrobial agents.The review article underscores the importance of careful application and consideration of each irrigant's properties to ensure safe and effective endodontic procedures.It serves as a valuable guide for clinicians in selecting appropriate irrigants based on specific treatment requirements.展开更多
基金supported by the National Natural Science Foundation of China(No.21878330)Key Research and Development Program of Ministry of Science and Technology of China(No.2019YFC1907602)Scientific Research and Technology Development Program of China National Petroleum Corporation(2020B-2116).
文摘NizP supported catalysts exhibit high catalytic activities in hydrogenation reaction,of which the particle sizes of Ni_(2)P active phases are the key influential factor.This research focus on the effect of chelators on the size of Ni_(2)P particles over wrinkle silica nanoparticles(WSNs)by introducing chelating agents EDTA and NTA during impregnation process.The characterization results show that chelators modified cata-lysts possess smaller size of Ni_(2)P particles than the unmodified Ni_(2)P catalysts.Among all the synthesized catalysts,the EDTA modified Ni_(2)PE(1.5)/WSNs catalyst possesses smallest average particle size of Ni_(2)P,only 2.6 nm.Moreover,the Ni_(2)P catalysts with the assistance of EDTA exhibits better catalytic activity than that of NTA under high reaction temperature,which can be ascribed to the strong bonding between EDTA and Ni.And the EDTA modified Ni_(2)PE(1.5)/WSNs catalyst shows highest hydrogenation ability,almost reaching 100%decalin selectivity.
基金Funded by the Cooperative Project of Yulin City,Shaanxi Province,201
文摘Polyacrylamide-urea-sulfanilamide(PUS) was prepared as a novel heavy metal ions chelator and successfully used to simultaneously remove heavy metals from wastewater effluents.The effects of reaction parameters(sodium hydroxide,material ratio,temprature and contact time) were monitored to specify the best synthesis conditions.PUS was chemically characterized by means of infrared spectroscopy(FTIR) and ultraviolet-visible(UV-Vis).The simultaneous chelation performance of PUS towards selected heavy metals ions,Ni2+,Cu2+,Pb2+,Zn2+,Cd2+ was discussed,showing that Ni2+,Cu2+,Pb2+,Zn2+ could be better chelated.It is indicated that the synthesized PUS is a potential remediation material when used for the treatment of wastewater containing metal ions.
文摘This study investigated the potential utility of poly (sodium N-undecanoyl-L-leucyl-valinate) (poly-L-SULV), poly (sodium N-undecanoyl-L-leucyl-alanate) (poly-L-SULA), and poly (sodium N-undecanoyl-glycinate) (poly-SUG) molecular micelles (MMs) as chelators for heavy metal (Cd, Cr, Cu, Co, and Ni) ion remediation of kaolinite clay using D-optimum experimental design. D-optimum experimental design was employed to simultaneously investigate the influence of design variables such as the buffer pH, chelator concentration, and centrifuge speed to evaluate the optimum conditions and to reduce the time and cost of metal ion remediation. The partition coefficients of the metal ion concentrations between the kaolinite clay and chelator equilibrium were also evaluated. In addition, the influence of metal ion concentrations on the remediation capability of the chelators was evaluated by conducting remediation studies at four different (10 ppm, 40 ppm, 60 ppm, and 80 ppm) metal ion concentrations. In general, the results of the remediation efficiency and partition coefficients obtained in this study are highly metal ion dependent and also dependent upon the chelator used for the remediation. Specifically, the remediation efficiency of the molecular micelles was found to be comparable to or better than the corresponding remediation efficiency obtained when SDS or EDTA was used for the remediation. However, at optimum conditions, poly-SULV and poly-L-SULA molecular micelle chelators demonstrated superior remediation efficiencies for Cr, with remediation efficiency of 99.9 ± 8.7% and 99.1 ± 0.7%, respectively.
文摘Desferrioxamine (DFO), deferiprone (DFP) and deferasirox (DFX) are promising effective iron chelators for the treatment of iron overload in b-thalassemia patients;nonetheless, their side effects have also been reported. 3-Hydroxypyridinone derivatives are being developed as a safer new chelator and in combined chelation therapy. We evaluated the iron-chelating activity of 1-(N-acetyl-6-aminohexyl)-3-hydroxypyridin-4-one (CM1) in iron-loaded C57BL6 mice. The feeding of a ferrocene-supplemented diet (Fe diet) to mice resulted in iron overload, detectable plasma nontransferrin-bound iron (NTBI) and labile plasma iron (LPI), and increases of red cell membrane iron, plasma malondialdehyde (MDA) and excessive tissue iron deposits. Like DFP, the CM1 lowered the levels of the membrane non-heme iron, the NTBI and LPI (p < 0.05) and the MDA after 3 months of treatment. Administration of the Fe diet and the Fe diet along with the chelators did not change the morphology of the liver and heart. Numerous iron accumulations were observed in the liver and spleen tissues of the Fe dietfed mice, whereas the CM1 reduced such iron deposition. Thus, 1-(N-acetyl-6-aminohexyl)-3-hydro- xypyridin-4-one (CM1) can be considered a candidate bidentate oral iron chelator and is effective in the removal of toxic irons in blood compartment and tissues. The effectiveness and toxicity of the CM1 need to be investigated extensively in thalassemia mice and patients with iron overload.
文摘Despite its various vital roles in the different body’s metabolisms,iron may have a hazardous impact on health when it exceeds its normal values.Iron overload is triggered by many genetic and behavioral factors.Furthermore,excessive iron levels have also been observed in many pathologies such as Alzheimer’s,Parkinson’s,cardiovascular and some cancerous diseases.This paper describes a set of natural iron chelators as an effective and a safe orthomolecular approach in chelating iron.Orthomolecular medicine is based on providing patients with nutritional supplementation at high doses to treat and prevent diseases.This paper describes the properties of a set of flavonoids and phenolic acids such as curcumin and ferulic acid that can be administered as supplements to patients suffering from iron overload since they are classified as strong chelators.Those natural iron chelators’supplements are mainly extracted from fruits,vegetables,and plants.As chelators,they are able to bind effectively to iron,inhibit the production of reactive oxygen species,and reduce the levels of oxidative stress.They can also play an effective therapeutic role in the treatment of neurodegenerative,cardiovascular,diabetic,and cancerous diseases thanks to their iron chelation,antioxidant,and anti-inflammatory properties.
基金the Research and Development Program of Science and Technology Department of Sichuan Province(2022JDJQ0050)111 Project(B18035)the Fundamental of Research Funds for the Central Universities.
文摘Inflammatory responses,manifested in excessive oxidative stress and microglia overactivation,together with metal ion-triggered amyloid-beta(Aβ)deposition,are critical hallmarks of Alzheimer’s disease(AD).The intricate pathogenesis causes severe impairment of neurons,which,in turn,exacerbates Aβaggregation and facilitates AD progression.Herein,multifunctional melanin-like metal ion chelators and neuroinflammation regulators(named PDA@K)were constructed for targeted treatment of AD.In this platform,intrinsically bioactive material polydopamine nanoparticles(PDA)with potent metal ion chelating and ROS scavenging effects were decorated with the KLVFF peptide,endowing the system with the capacity of enhanced pathological blood–brain barrier(BBB)crossing and lesion site accumulation via Aβhitchhiking.In vitro and in vivo experiment revealed that PDA@K had high affinity toward Aβand were able to hitch a ride on Aβto achieve increased pathological BBB crossing.The engineered PDA@K effectively mitigated Aβaggregate and alleviated neuroinflammation.
文摘The role of copper element has been an increasingly relevant topic in recent years in the fields of human and animal health, for both the study of new drugs and innovative food and feed supplements. This metal plays an important role in the central nervous system, where it is associated with glutamatergic signaling, and it is widely involved in inflammatory processes. Thus, diseases involving copper(Ⅱ) dyshomeostasis often have neurological symptoms, as exemplified by Alzheimer's and other diseases(such as Parkinson's and Wilson's diseases). Moreover, imbalanced copper ion concentrations have also been associated with diabetes and certain types of cancer, including glioma. In this paper, we propose a comprehensive overview of recent results that show the importance of these metal ions in several pathologies, mainly Alzheimer's disease, through the lens of the development and use of copper chelators as research compounds and potential therapeutics if included in multi-target hybrid drugs. Seeing how copper homeostasis is important for the well-being of animals as well as humans, we shortly describe the state of the art regarding the effects of copper and its chelators in agriculture, livestock rearing, and aquaculture, as ingredients for the formulation of feed supplements as well as to prevent the effects of pollution on animal productions.
文摘BACKGROUND Acute liver failure(ALF)may be the first and most dramatic presentation of Wilson’s disease(WD).ALF due to WD(WD-ALF)is difficult to distinguish from other causes of liver disease and is a clear indication for liver transplantation.There is no firm recommendation on specific and supportive medical treatment for this condition.AIM To critically evaluate the diagnostic and therapeutic management of WD-ALF patients in order to improve their survival with native liver.METHODS A retrospective analysis of patients with WD-ALF was conducted in two pediatric liver units from 2018 to 2023.RESULTS During the study period,16 children(9 males)received a diagnosis of WD and 2 of them presented with ALF.The first was successfully treated with an unconventional combination of low doses of D-penicillamine and zinc plus steroids,and survived without liver transplant.The second,exclusively treated with supportive therapy,needed a hepatotransplant to overcome ALF.CONCLUSION Successful treatment of 1 WD-ALF patient with low-dose D-penicillamine and zinc plus steroids may provide new perspectives for management of this condition,which is currently only treated with liver transplantation.
文摘BACKGROUND Wilson disease(WD)is a progressive,potentially fatal degenerative disease affecting the liver and central nervous system.Given its low prevalence,collecting data on large cohorts of patients with WD is challenging.Comprehensive insur-ance claims databases provide powerful tools to collect retrospective data on large numbers of patients with rare diseases.AIM To describe patients with WD in the United States,their treatment and clinical outcome,using a large insurance claims database.METHODS This retrospective,longitudinal study was performed in the Clarivate Real-World Data Product database.All patients with≥2 claims associated with an Interna-tional Classification of Diseases 10(ICD-10)diagnostic code for WD(E83.01)between 2016 and 2021 were included and followed until death or study end.Patients were divided into two groups by whether or not they were documented to have received a specific treatment for WD.Clinical manifestations,hospital-isations,liver transplantation and death were documented.RESULTS Overall,5376 patients with an ICD-10 diagnostic code for WD were identified.The mean age at inclusion was 41.2 years and 52.0%were men.A specific WD treatment was documented for 885 patients(15.1%),although the number of patients taking zinc salts may be underestimated due to over the counter purchase.At inclusion,the mean age of patients with a documented treatment was 36.6±17.8 years vs 42.2±19.6 years in those without a documented treatment.During follow-up,273 patients(5.1%)died.Compared with the American general population,the standardised mortality ratio was 2.19.The proportion of patients with a documented WD-specific treatment who died during follow-up was 4.0%and the mean age at death 52.7 years.CONCLUSION Patients treated for WD in the United States had an excess early mortality compared with the American population.These findings indicate that there is a significant unmet need for effective treatment for WD in the United States.
基金granted by the National Key R&D Program of China (2021YFD21001005)National Natural Science Foundation of China (31972102,32101980)+1 种基金Special key project of Chongqing technology innovation and application development (cstc2021jscx-cylhX0014)Chongqing Technology Innovation and Application Development Special Project (cstc2021jscx-tpyzxX0014)。
文摘This study aimed to characterize and identify calcium-chelating peptides from rabbit bone collagen and explore the underlying chelating mechanism.Collagen peptides and calcium were extracted from rabbit bone by instant ejection steam explosion(ICSE)combined with enzymatic hydrolysis,followed by chelation reaction to prepare rabbit bone peptide-calcium chelate(RBCP-Ca).The chelating sites were further analyzed by liquid chromatography-tandem mass(LC-MS/MS)spectrometry while the chelating mechanism and binding modes were investigated.The structural characterization revealed that RBCP successfully chelated with calcium ions.Furthermore,LC-MS/MS analysis indicated that the binding sites included both acidic amino acids(Asp and Glu)and basic amino acids(Lys and Arg),Interestingly,three binding modes,namely Inter-Linking,Loop-Linking and Mono-Linking were for the first time found,while Inter-Linking mode accounted for the highest proportion(75.1%),suggesting that chelation of calcium ions frequently occurred between two peptides.Overall,this study provides a theoretical basis for the elucidation of chelation mechanism of calcium-chelating peptides.
基金Supported by the Service Public de Wallonie(SPW-EER,convention 8588,Belgium).
文摘BACKGROUND Irritable bowel syndrome(IBS)is one of the most frequent and debilitating conditions leading to gastroenterological referrals.However,recommended treatments remain limited,yielding only limited therapeutic gains.Chitin-glucan(CG)is a novel dietary prebiotic classically used in humans at a dosage of 1.5-3.0 g/d and is considered a safe food ingredient by the European Food Safety Authority.To provide an alternative approach to managing patients with IBS,we performed preclinical molecular,cellular,and animal studies to evaluate the role of chitin-glucan in the main pathophysiological mechanisms involved in IBS.AIM To evaluate the roles of CG in visceral analgesia,intestinal inflammation,barrier function,and to develop computational molecular models.METHODS Visceral pain was recorded through colorectal distension(CRD)in a model of long-lasting colon hypersensitivity induced by an intra-rectal administration of TNBS[15 milligrams(mg)/kilogram(kg)]in 33 Sprague-Dawley rats.Intracolonic pressure was regularly assessed during the 9 wk-experiment(weeks 0,3,5,and 7)in animals receiving CG(n=14)at a human equivalent dose(HED)of 1.5 g/d or 3.0 g/d and compared to negative control(tap water,n=11)and positive control(phloroglucinol at 1.5 g/d HED,n=8)groups.The anti-inflammatory effect of CG was evaluated using clinical and histological scores in 30 C57bl6 male mice with colitis induced by dextran sodium sulfate(DSS)administered in their drinking water during 14 d.HT-29 cells under basal conditions and after stimulation with lipopolysaccharide(LPS)were treated with CG to evaluate changes in pathways related to analgesia μ-opioid receptor(MOR),cannabinoid receptor 2(CB2),peroxisome proliferator-activated receptor alpha,inflammation[interleukin(IL)-10,IL-1b,and IL-8]and barrier function[mucin 2-5AC,claudin-2,zonula occludens(ZO)-1,ZO-2]using the real-time PCR method.Molecular modelling of CG,LPS,lipoteichoic acid(LTA),and phospholipomannan(PLM)was developed,and the ability of CG to chelate microbial pathogenic lipids was evaluated by docking and molecular dynamics simulations.Data were expressed as the mean±SEM.RESULTS Daily CG orally-administered to rats or mice was well tolerated without including diarrhea,visceral hypersensitivity,or inflammation,as evaluated at histological and molecular levels.In a model of CRD,CG at a dosage of 3 g/d HED significantly decreased visceral pain perception by 14%after 2 wk of administration(P<0.01)and reduced inflammation intensity by 50%,resulting in complete regeneration of the colonic mucosa in mice with DSS-induced colitis.To better reproduce the characteristics of visceral pain in patients with IBS,we then measured the therapeutic impact of CG in rats with TNBS-induced inflammation to long-lasting visceral hypersensitivity.CG at a dosage of 1.5 g/d HED decreased visceral pain perception by 20%five weeks after colitis induction(P<0.01).When the CG dosage was increased to 3.0 g/d HED,this analgesic effect surpassed that of the spasmolytic agent phloroglucinol,manifesting more rapidly within 3 wk and leading to a 50%inhibition of pain perception(P<0.0001).The underlying molecular mechanisms contributing to these analgesic and anti-inflammatory effects of CG involved,at least in part,a significant induction of MOR,CB2 receptor,and IL-10,as well as a significant decrease in pro-inflammatory cytokines IL-1b and IL-8.CG also significantly upregulated barrier-related genes including muc5AC,claudin-2,and ZO-2.Molecular modelling of CG revealed a new property of the molecule as a chelator of microbial pathogenic lipids,sequestering gram-negative LPS and gram-positive LTA bacterial toxins,as well as PLM in fungi at the lowesr energy conformations.CONCLUSION CG decreased visceral perception and intestinal inflammation through master gene regulation and direct binding of microbial products,suggesting that CG may constitute a new therapeutic strategy for patients with IBS or IBSlike symptoms.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 30170027 and 30371136)
文摘An ultrafiltered low-molecular-weight preparation of chelating compounds was isolated from a wood-containing culture of the white-rot basidiomycete Coriolus versicolor. This preparation could chelate Fe3+ and reduce Fe3+ to Fe2+, demonstrating that the substance may serve as a ferric chelator, oxygen-reducing agent, and redox-cycling molecule, which would include functioning as the electron transport carrier in Fenton reaction. Lignin was treated with the iron-binding chelator and the changes in structure were investigated by 1H-NMR, 13C-NMR, difference spectrum caused by ionization under alkaline conditions and nitrobenzene oxidation. The results indicated that the iron-binding chelator could destroy the β-O-4 bonds in etherified lignin units and insert phenolic hydroxyl groups. The low-molecular-weight chelator secreted by C. versicolor resulted in new phenolic substructures in the lignin polymer, making it susceptible to attack by laccase or manganese peroxidase. Thus, the synergic action of the iron-binding chelator and the lignocellulolytic enzymes made the substrate more acces- sible to degradation.
基金the Guangdong Provincial-level Special Funds for Promoting High-quality Economic Development (No. 2020032)Natural science foundation of Guangdong province (No. 2017A030313235)+1 种基金Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)(No. GML2019-ZD0406)National Natural Science Foundation of China (No.81673326).
文摘Mycosphazine A(1), a new iron(Ⅲ) chelator of coprogen-type siderophore, and mycosphamide A(2), a new cyclic amide benzoate, together with six known aryl amides(3-8), were isolated from the fermentation broth of the deep-sea-derived fungus Mycosphaerella sp. SCSIO z059. Alkaline hydrolysis of 1 afforded a new epimer of dimerum acid, mycosphazine B(1 a), and a new bi-fusarinine-type siderophore, mycosphazine C(1 b). The planar structures of the new compounds were elucidated by extensive spectroscopic data analysis. The absolute configurations of amino acid residues in 1 a and 1 b were determined by acid hydrolysis. And the absolute configuration of 2 was established by quantum chemical calculations of the electronic circular dichroism(ECD) spectra. Compound 1 is the first siderophore-Fe(Ⅲ) chelator incorporating both L-ornithine and D-ornithine unites. Compounds 3-8 were reported as natural products for the first time, and the 1 H and 13 C NMR data of 6 and 8 were assigned for the first time. Compounds 1 and 1 a could greatly promote the biofilm formation of bacterium Bacillus amyloliquefaciens with the rate of about 249% and 524% at concentration of 100 μg·mL-1, respectively.
基金sponsored by the Central Government Guides Local Scientific and Technological Development Fund Project(YDZX 20201400001443)Shanxi International Science and Technology Cooperation Project(201803D421065)+2 种基金National Natural Science Foundation of China(Grant No.30672621 and 81173473)Taiyuan City Science and Technology Project Special Talents Star Project(120247-08)Basic Research Project of Shanxi Province(202103021223241).
文摘Lead is a ubiquitous pollutant and Pb pollution is a global public health problem.Lead has been reported to induce multiple adverse effects,including reproductive toxicity,neurotoxicity,carcinogenicity,nephrotoxicity,immunotoxicity,and hypertension[1].The traditional medical treatment available for Pb poisoning is chelation,which can save lives in individuals with very high blood Pb levels.The commonly used chelating agents include CaNa2EDTA and meso-2,3-dimercaptosuccinic acid.However,chelation therapy has strong short-term effects on the overall long-term management of Pb exposure.
基金funded by Jiangsu Shuang Chuang Tuan Dui program (JSSCTD202147)Jiangsu Shuang Chuang Ren Cai program (JSSCRC2021541)+1 种基金Young Elite Scientists Sponsorship Program by CAST (2022QNRC001)the Initiation Funds of Yangzhou University for Distinguished Scientists
文摘Background Our previous studies demonstrated that divalent organic iron(Fe)proteinate sources with higher complexation or chelation strengths as expressed by the greater quotient of formation(Qf)values displayed higher Fe bioavailabilities for broilers.Sodium iron ethylenediaminetetraacetate(NaFeEDTA)is a trivalent organic Fe source with the strongest chelating ligand EDTA.However,the bioavailability of Fe when administered as NaFeEDTA in broilers and other agricultural animals remains untested.Herein,the chemical characteristics of 12 NaFeEDTA products were determined.Of these,one feed grade NaFeEDTA(Qf=2.07×10^(8)),one food grade NaFeEDTA(Qf=3.31×10^(8)),and one Fe proteinate with an extremely strong chelation strength(Fe-Prot ES,Qf value=8,590)were selected.Their bioavailabilities relative to Fe sulfate(FeSO_(4)·7H_(2)O)for broilers fed with a conventional corn-soybean meal diet were evaluated during d 1 to 21 by investigating the effects of the above Fe sources and added Fe levels on the growth performance,hematological indices,Fe contents,activities and gene expressions of Fe-containing enzymes in various tissues of broilers.Results NaFeEDTA sources varied greatly in their chemical characteristics.Plasma Fe concentration(PI),transferrin saturation(TS),liver Fe content,succinate dehydrogenase(SDH)activities in liver,heart,and kidney,catalase(CAT)activity in liver,and SDH mRNA expressions in liver and kidney increased linearly(P<0.05)with increasing levels of Fe supplementation.However,differences among Fe sources were detected(P<0.05)only for PI,liver Fe content,CAT activity in liver,SDH activities in heart and kidney,and SDH mRNA expressions in liver and kidney.Based on slope ratios from multiple linear regressions of the above indices on daily dietary analyzed Fe intake,the average bioavailabilities of Fe-Prot ES,feed grade NaFeEDTA,and food grade NaFeEDTA relative to the inorganic FeSO_(4)·7H_(2)O(100%)for broilers were 139%,155%,and 166%,respectively.Conclusions The bioavailabilities of organic Fe sources relative to FeSO_(4)·7H_(2)O were closely related to their Qf values,and NaFeEDTA sources with higher Qf values showed higher Fe bioavailabilities for broilers fed with a conventional corn-soybean meal diet.
基金supported by MH101874 (to CFZ)MH122379 (to CFZ)the Taylor Family Institute for Innovative Psychiatric Research and the Bantly Foundation (to CFZ)。
文摘Glyphosate-based herbicides are widely used around the world, making it likely that most humans have significant exposure. Because of habitual exposure, there are concerns about toxicity including neurotoxicity that could result in neurological, psychiatric, or cognitive impairment. We recently found that a single injection of glyphosate inhibits long-term potentiation, a cellular model of learning and memory, in rat hippocampal slices dissected 1 day after injection, indicating that glyphosate-based herbicides can alter cognitive function. Glyphosate-based herbicides could adversely affect cognitive function either indirectly and/or directly. Indirectly, glyphosate could affect gut microbiota, and if dysbiosis results in endotoxemia(leaky gut), infiltrated bacterial by-products such as lipopolysaccharides could activate pro-inflammatory cascades. Glyphosate can also directly trigger pro-inflammatory cascades. Indeed, we observed that acute glyphosate exposure inhibits long-term potentiation in rat hippocampal slices. Interestingly, direct inhibition of long-term potentiation by glyphosate appears to be similar to that of lipopolysaccharides. There are several possible measures to control dysbiosis and neuroinflammation caused by glyphosate. Dietary intake of polyphenols, such as quercetin, which overcome the inhibitory effect of glyphosate on long-term potentiation, could be one effective strategy. The aim of this narrative review is to discuss possible mechanisms underlying neurotoxicity following glyphosate exposure as a means to identify potential treatments.
基金This work is financially supported by National Natural Science Foundation of China(NSFC-No.52173257 and 52372064).
文摘Aqueous zinc-ion batteries are promising due to inherent safety,low cost,low toxicity,and high volumetric capacity.However,issues of dendrites and side reactions between zinc metal anode and the electrolyte need to be solved for extended storage and cycle life.Here,we proposed that an electrolyte additive with an intermediate chelation strength of zinc ion—strong enough to exclude water molecules from the zinc metal-electrolyte interface and not too strong to cause a significant energy barrier for zinc ion dissociation—can benefit the electrochemical stability by suppressing hydrogen evolution reaction,overpotential growth,and den-drite formation.Penta-sodium diethylene-triaminepentaacetic acid salt was selected for such a purpose.It has a suitable chelating ability in aqueous solutions to adjust solvation sheath and can be readily polarized under electrical loading conditions to further improve the passivation.Zn||Zn symmetric cells can be stably operated over 3500 h at 1 mA cm^(-2).Zn||NH4V4O10 full cells with the additive show great cycling stability with 84.6%capacity retention after 500 cycles at 1 A g^(-1).Since the additive not only reduces H2 evolution and corrosion but also modifies Zn2+diffusion and deposition,highlyreversible Zn electrodes can be achieved as verified by the experimental results.Our work offers a practical approach to the logical design of reliable electrolytes for high-performance aqueous batteries.
基金supported by the National Natural Science Foundation of China (Grant Nos.32171849 and 32271946).
文摘Although some species that accumulate only cyanidin(Cy)in nature can produce blue flowers through iron ions,there has been no evidence of blue chrysanthemums being generated in this manner.This study revealed that flavonoid extracts from the ray florets of the chrysanthemum cultivar‘Wandai Fengguang’turned blue when exposed to Fe^(3+).Samples that could turn blue were labeled as CB(Cy-determined blue flowers),while samples that did not turn blue were labeled as CN(Cy-determined non-blue flowers).After a series of experiments,a stable screening system was established using flavonoid extracts containing NaAc buffer at pH 5.5 and a total anthocyanin concentration(TAC)of 30 μmol·L^(-1),and the addition of Fe^(3+)from 0 to 0.25 μmol·L^(-1)allowed for the selection of five CB samples from 39 chrysanthemum cultivars.All five CB samples exhibited flower color phenotypes that belonged to Cluster-I with redness(a*)values ranging from 29.03 to 45.99,yellowness(b*)values from-11.31 to 3.77,and brightness(L*)values from 29.07 to 45.99.Additionally,the ratio of TAC to total luteolin concentration(TLC)was found to be a critical factor for distinguishing between CB and CN samples.To realize the desired blue hue in the flavonoid extracts with the participation of Fe^(3+),a TAC to TLC ratio of 2.25 and above is required.Moreover,the protoplasts and ray florets of CB samples that turned blue with the involvement of Fe^(2+)showed great potential for cultivating blue chrysanthemums through ferric-anthocyanin chelate.Overall,this study reveals that blue flowers can be cultivated through the increase in the iron ion concentration,combined with the accumulation of Cy.
基金supported by the Joint Funds of the National Natural Science Foundation of China(No.U22A20140)the Independent Cultivation Program of Innovation Team of Ji'nan City(No.2019GXRC011)the National Natural Science Foundation of China(No.62001189)
文摘Although Zn metal has been regarded as the most promising anode for aqueous batteries,its practical application is still restricted by side reactions and dendrite growth.Herein,an in-situ solid electrolyte interphase(SEI)film formed on the interface of electrode/electrolyte during the plating/stripping of zinc anodes by introducing trace amounts of multidentate ligand sodium diethyldithiocarbamate(DDTC)additive into 1 M ZnSO_(4).The synergistic effect of in-situ solid electrolyte interphase forming and chelate effect endows Zn^(2+)with uniform and rapid interface-diffusion kinetics against dendrite growth and surface side reactions.As a result,the Zn anode in 1 M ZnSO_(4)+DDTC electrolytes displays an ultra-high coulombic efficiency of 99.5%and cycling stability(more than 2000 h),especially at high current density(more than 600 cycles at 40 mA cm^(-2)).Moreover,the Zn//MnO_(2)full cells in the ZnSO_(4)+DDTC electrolyte exhibit outstanding cyclic stability(with 98.6%capacity retention after 2000 cycles at 10 C).This electrode/electrolyte interfacial chemistry modulated strategy provides new insight into enhancing zinc anode stability for high-performance aqueous zinc batteries.
文摘This review article explores the fundamental principles of modern endodontics with a focus on root canal cleaning and shaping.It reviews commonly used endodontic irrigant,namely sodium hypochlorite(NaOCl),herbal extracts,chlorhexidine(CHX),and chelating agents,highlighting their properties,applications,and potential drawbacks.NaOCl,a key antimicrobial agent,demonstrates effectiveness against various microorganisms but poses challenges such as high cytotoxicity.Herbal extracts,gaining recognition in endodontics,present an alternative with potential advantages in preserving dentin integrity.CHX,known for its broad-spectrum antimicrobial activity,is discussed in both liquid and gel formulations,emphasizing its role in reducing smear layer formation and preserving hybrid layer durability.Chelating agents,specifically ethylenediaminetetraacetic acid and citric acid,play a vital role in removing the smear layer,enhancing dentin permeability,and facilitating the penetration of antimicrobial agents.The review article underscores the importance of careful application and consideration of each irrigant's properties to ensure safe and effective endodontic procedures.It serves as a valuable guide for clinicians in selecting appropriate irrigants based on specific treatment requirements.