As information acquisition terminals for artificial olfaction,chemiresistive gas sensors are often troubled by their cross-sensitivity,and reducing their cross-response to ambient gases has always been a difficult and...As information acquisition terminals for artificial olfaction,chemiresistive gas sensors are often troubled by their cross-sensitivity,and reducing their cross-response to ambient gases has always been a difficult and important point in the gas sensing area.Pattern recognition based on sensor array is the most conspicuous way to overcome the cross-sensitivity of gas sensors.It is crucial to choose an appropriate pattern recognition method for enhancing data analysis,reducing errors and improving system reliability,obtaining better classification or gas concentration prediction results.In this review,we analyze the sensing mechanism of crosssensitivity for chemiresistive gas sensors.We further examine the types,working principles,characteristics,and applicable gas detection range of pattern recognition algorithms utilized in gas-sensing arrays.Additionally,we report,summarize,and evaluate the outstanding and novel advancements in pattern recognition methods for gas identification.At the same time,this work showcases the recent advancements in utilizing these methods for gas identification,particularly within three crucial domains:ensuring food safety,monitoring the environment,and aiding in medical diagnosis.In conclusion,this study anticipates future research prospects by considering the existing landscape and challenges.It is hoped that this work will make a positive contribution towards mitigating cross-sensitivity in gas-sensitive devices and offer valuable insights for algorithm selection in gas recognition applications.展开更多
Abrupt near-surface temperature changes in mountainous areas are a special component of the mountain climate system.Fast and accurate measurements of the locations,intensity,and width of the near-surface changes are n...Abrupt near-surface temperature changes in mountainous areas are a special component of the mountain climate system.Fast and accurate measurements of the locations,intensity,and width of the near-surface changes are necessary but highly difficult due to the complicated environmental conditions and instrumental issues.This paper develops a spatial pattern recognition method to measure the near-surface high temperature increase(NSHTI),one of the lesser-attended changes.First,raster window measurement was proposed to calculate the temperature lapse rate using MODIS land surface temperature and SRTM DEM data.It fully considers the terrain heights of two neighboring cells on opposite or adjacent slopes with a moving window of 3×3 cell size.Second,a threshold selection was performed to identify the NSHTI cells using a threshold of-0.65℃/100 m.Then,the NSHTI strips were parameterized through raster vectorization and spatial analysis.Taking Yunnan,a mountainous province in southwestern China,as the study area,the results indicate that the NSHTI cells concentrate in a strip-like pattern along the mountains and valleys,and the strips are almost parallel to the altitude contours with a slight northward uplift.Also,they are located mostly at a 3/5 height of high mountains or within 400 m from the valley floors,where the controlling topographic index is the altitude of the terrain trend surface but not the absolute elevation and the topographic uplift height and cutting depth.Additionally,the NSHTI intensity varies with the geographic locations and the proportions increase with an exponential trend,and the horizontal width has a mean of about 1000 m and a maximum of over 5000 m.The result demonstrates that the proposed method can effectively recognize NSHTI boundaries over mountains,providing support for the modeling of weather and climate systems and the development of mountain resources.展开更多
The pharmaceutical industry increasingly values medicinal plants due to their perceived safety and costeffectiveness compared to modern drugs.Throughout the extensive history of medicinal plant usage,various plant par...The pharmaceutical industry increasingly values medicinal plants due to their perceived safety and costeffectiveness compared to modern drugs.Throughout the extensive history of medicinal plant usage,various plant parts,including flowers,leaves,and roots,have been acknowledged for their healing properties and employed in plant identification.Leaf images,however,stand out as the preferred and easily accessible source of information.Manual plant identification by plant taxonomists is intricate,time-consuming,and prone to errors,relying heavily on human perception.Artificial intelligence(AI)techniques offer a solution by automating plant recognition processes.This study thoroughly examines cutting-edge AI approaches for leaf image-based plant identification,drawing insights from literature across renowned repositories.This paper critically summarizes relevant literature based on AI algorithms,extracted features,and results achieved.Additionally,it analyzes extensively used datasets in automated plant classification research.It also offers deep insights into implemented techniques and methods employed for medicinal plant recognition.Moreover,this rigorous review study discusses opportunities and challenges in employing these AI-based approaches.Furthermore,in-depth statistical findings and lessons learned from this survey are highlighted with novel research areas with the aim of offering insights to the readers and motivating new research directions.This review is expected to serve as a foundational resource for future researchers in the field of AI-based identification of medicinal plants.展开更多
Dynamic signature is a biometric modality that recognizes an individual’s anatomic and behavioural characteristics when signing their name. The rampant case of signature falsification (Identity Theft) was the key mot...Dynamic signature is a biometric modality that recognizes an individual’s anatomic and behavioural characteristics when signing their name. The rampant case of signature falsification (Identity Theft) was the key motivating factor for embarking on this study. This study was necessitated by the damages and dangers posed by signature forgery coupled with the intractable nature of the problem. The aim and objectives of this study is to design a proactive and responsive system that could compare two signature samples and detect the correct signature against the forged one. Dynamic Signature verification is an important biometric technique that aims to detect whether a given signature is genuine or forged. In this research work, Convolutional Neural Networks (CNNsor ConvNet) which is a class of deep, feed forward artificial neural networks that has successfully been applied to analysing visual imagery was used to train the model. The signature images are stored in a file directory structure which the Keras Python library can work with. Then the CNN was implemented in python using the Keras with the TensorFlow backend to learn the patterns associated with the signature. The result showed that for the same CNNs-based network experimental result of average accuracy, the larger the training dataset, the higher the test accuracy. However, when the training dataset are insufficient, better results can be obtained. The paper concluded that by training datasets using CNNs network, 98% accuracy in the result was recorded, in the experimental part, the model achieved a high degree of accuracy in the classification of the biometric parameters used.展开更多
Objective:To explore which pattern recognition receptors(PRRs)play a key role in the development of hand,foot,and mouth disease(HFMD)by analyzing PRR-associated genes.Methods:We conducted a comparative analysis of PRR...Objective:To explore which pattern recognition receptors(PRRs)play a key role in the development of hand,foot,and mouth disease(HFMD)by analyzing PRR-associated genes.Methods:We conducted a comparative analysis of PRR-associated gene expression in human peripheral blood mononuclear cells(PBMCs)infected with enterovirus 71(EV-A71)which were derived from patients with HFMD of different severities and at different stages.A total of 30 PRR-associated genes were identified as significantly upregulated both over time and across different EV-A71 isolates.Subsequently,ELISA was employed to quantify the expression of the six most prominent genes among these 30 identified genes,specifically,BST2,IRF7,IFI16,TRIM21,MX1,and DDX58.Results:Compared with those at the recovery stage,the expression levels of BST2(P=0.027),IFI16(P=0.016),MX1(P=0.046)and DDX58(P=0.008)in the acute stage of infection were significantly upregulated,while no significant difference in the expression levels of IRF7(P=0.495)and TRIM21(P=0.071)was found between different stages of the disease.The expression levels of BST2,IRF7,IFI16 and MX1 were significantly higher in children infected with single pathogen than those infected with mixed pathogens,and BST2,IRF7,IFI16 and MX1 expression levels were significantly lower in coxsackie B virus(COXB)positive patients than the negative patients.Expression levels of one or more of BST2,IRF7,IFI16,TRIM21,MX1 and DDX58 genes were correlated with PCT levels,various white blood cell counts,and serum antibody levels that reflect disease course of HFMD.Aspartate aminotransferase was correlated with BST2,MX1 and DDX58 expression levels.Conclusions:PRR-associated genes likely initiate the immune response in patients at the acute stage of HFMD.展开更多
The combination of pyrolysis high resolution gas chromatography and pat- tern recognition techniques is a powerful tool for the classification of traditional Chinese drug.A study has been completed on 55 Beimu samples...The combination of pyrolysis high resolution gas chromatography and pat- tern recognition techniques is a powerful tool for the classification of traditional Chinese drug.A study has been completed on 55 Beimu samples of five different geographic origins: Eastern China.Central China.South-western China,North-western China and North-eastern China.Principal component analysis and SIMCA are applied to effectively classifying the samples according to the origin of the plants.The chemical information contained in the high resolution gas chromatographic data is sufficient to characterize the geographic origin of sam- pies.展开更多
In order to improve the accuracy of travel demand forecast and considering the distribution of travel behaviors within time dimension, a trip chaining pattern recognition model was established based on activity purpos...In order to improve the accuracy of travel demand forecast and considering the distribution of travel behaviors within time dimension, a trip chaining pattern recognition model was established based on activity purposes by applying three methods: the support vector machine (SVM) model, the radial basis function neural network (RBFNN) model and the multinomial logit (MNL) model. The effect of explanatory factors on trip chaining behaviors and their contribution to model performace were investigated by sensitivity analysis. Results show that the SVM model has a better performance than the RBFNN model and the MNL model due to its higher overall and partial accuracy, indicating its recognition advantage under a smai sample size scenario. It is also proved that the SVM model is capable of estimating the effect of multi-category factors on trip chaining behaviors more accurately. The different contribution of explanatory, factors to trip chaining pattern recognition reflects the importance of refining trip chaining patterns ad exploring factors that are specific to each pattern. It is shown that the SVM technology in travel demand forecast modeling and analysis of explanatory variable effects is practical.展开更多
The concept of the degree of similarity between interval-valued intuitionistic fuzzy sets (IVIFSs) is introduced, and some distance measures between IVIFSs are defined based on the Hamming distance, the normalized H...The concept of the degree of similarity between interval-valued intuitionistic fuzzy sets (IVIFSs) is introduced, and some distance measures between IVIFSs are defined based on the Hamming distance, the normalized Hamming distance, the weighted Hamming distance, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance, etc. Then, by combining the Hausdorff metric with the Hamming distance, the Euclidean distance and their weighted versions, two other similarity measures between IVIFSs, i. e., the weighted Hamming distance based on the Hausdorff metric and the weighted Euclidean distance based on the Hausdorff metric, are defined, and then some of their properties are studied. Finally, based on these distance measures, some similarity measures between IVIFSs are defined, and the similarity measures are applied to pattern recognitions with interval-valued intuitionistic fuzzy information.展开更多
A hybrid network is presented for spatio-temporal feature detecting, which is called TS-LM-SOFM. Its top layer is a novel single layer temporal sequence recognizer called TS which can transform sparse temporal sequen...A hybrid network is presented for spatio-temporal feature detecting, which is called TS-LM-SOFM. Its top layer is a novel single layer temporal sequence recognizer called TS which can transform sparse temporal sequential pattern into abstract spatial feature representations. The bottom layer of TS-LM-SOFM, a modified self-organizing feature map, is used as a spatial feature detector. A learning matrix connects the two layers. Experiments show that the hybrid network can well capture the spatio-temporal features of input signals.展开更多
Based on the regularity nature of lower-limb motion,an intent pattern recognition approach for above-knee prosthesis is proposed in this paper. To remedy the defects of recognizer based on electromyogram(EMG), we deve...Based on the regularity nature of lower-limb motion,an intent pattern recognition approach for above-knee prosthesis is proposed in this paper. To remedy the defects of recognizer based on electromyogram(EMG), we develop a pure mechanical sensor architecture for intent pattern recognition of lower-limb motion. The sensor system is composed of an accelerometer, a gyroscope mounted on the prosthetic socket, and two pressure sensors mounted under the sole. To compensate the delay in the control of prosthesis, the signals in the stance phase are used to predict the terrain and speed in the swing phase. Specifically, the intent pattern recognizer utilizes intraclass correlation coefficient(ICC) according to the Cartesian product of walking speed and terrain. Moreover, the sensor data are fused via DempsterShafer's theory. And hidden Markov model(HMM) is used to recognize the realtime motion state with the reference of the prior step. The proposed method can infer the prosthesis user's intent of walking on different terrain, which includes level ground,stair ascent, stair descent, up and down ramp. The experiments demonstrate that the intent pattern recognizer is capable of identifying five typical terrain-modes with the rate of 95.8%. The outcome of this investigation is expected to substantially improve the control performance of powered above-knee prosthesis.展开更多
A new pattern recognition method of shape was presented based on artificial neural network theory.The method avoids the defects of shape pattern recognition with polynomials and it has strong disturbance resistance.It...A new pattern recognition method of shape was presented based on artificial neural network theory.The method avoids the defects of shape pattern recognition with polynomials and it has strong disturbance resistance.It has been proved to be superior in recognizing different shape patterns by identifying many sorts of working sample books which the results are known.展开更多
In this paper, the feasibility and advantages of employing high performance liquid chromatographic (HPLC) fingerprints combined with pattern recognition techniques for quality control of Shenmai injection were inves...In this paper, the feasibility and advantages of employing high performance liquid chromatographic (HPLC) fingerprints combined with pattern recognition techniques for quality control of Shenmai injection were investigated and demonstrated. The Similarity Evaluation System was employed to evaluate the similarities of samples of Shenmai injection, and the HPLC generated chromatographic data were analyzed using hierarchical clustering analysis (HCA) and soft independent modeling of class analogy (SIMCA). Consistent results were obtained to show that the authentic samples and the blended samples were successfully classified by SIMCA, which could be applied to accurate discrimination and quality control of Shenmai injection. Furthermore, samples could also be grouped in accordance with manufacturers. Our results revealed that the developed method has potential perspective for the original discrimination and quality control of Shenmai injection.展开更多
In order to accurately and quickly identify the safety status pattern of coalmines,a new safety status pattern recognition method based on the extension neural network (ENN) was proposed,and the design of structure of...In order to accurately and quickly identify the safety status pattern of coalmines,a new safety status pattern recognition method based on the extension neural network (ENN) was proposed,and the design of structure of network,the rationale of recognition algorithm and the performance of proposed method were discussed in detail.The safety status pattern recognition problem of coalmines can be regard as a classification problem whose features are defined in a range,so using the ENN is most appropriate for this problem.The ENN-based recognition method can use a novel extension distance to measure the similarity between the object to be recognized and the class centers.To demonstrate the effectiveness of the proposed method,a real-world application on the geological safety status pattern recognition of coalmines was tested.Comparative experiments with existing method and other traditional ANN-based methods were conducted.The experimental results show that the proposed ENN-based recognition method can identify the safety status pattern of coalmines accurately with shorter learning time and simpler structure.The experimental results also confirm that the proposed method has a better performance in recognition accuracy,generalization ability and fault-tolerant ability,which are very useful in recognizing the safety status pattern in the process of coal production.展开更多
In computational physics proton transfer phenomena could be viewed as pattern classification problems based on a set of input features allowing classification of the proton motion into two categories: transfer 'occu...In computational physics proton transfer phenomena could be viewed as pattern classification problems based on a set of input features allowing classification of the proton motion into two categories: transfer 'occurred' and transfer 'not occurred'. The goal of this paper is to evaluate the use of artificial neural networks in the classification of proton transfer events, based on the feed-forward back propagation neural network, used as a classifier to distinguish between the two transfer cases. In this paper, we use a new developed data mining and pattern recognition tool for automating, controlling, and drawing charts of the output data of an Empirical Valence Bond existing code. The study analyzes the need for pattern recognition in aqueous proton transfer processes and how the learning approach in error back propagation (multilayer perceptron algorithms) could be satisfactorily employed in the present case. We present a tool for pattern recognition and validate the code including a real physical case study. The results of applying the artificial neural networks methodology to crowd patterns based upon selected physical properties (e.g., temperature, density) show the abilities of the network to learn proton transfer patterns corresponding to properties of the aqueous environments, which is in turn proved to be fully compatible with previous proton transfer studies.展开更多
This paper develops a fuzzy pattern recognition model for group decision making to solve the problem of lectotype optimization of offshore platforms. The lack of data and the inexact or incomplete information for crit...This paper develops a fuzzy pattern recognition model for group decision making to solve the problem of lectotype optimization of offshore platforms. The lack of data and the inexact or incomplete information for criteria are the main cause of uncertainty in the evaluation process, therefore it is necessary to integrate the judgments from different decision makers with different experience, knowledge and preference. This paper first uses a complementary principle based pairwise comparison method to obtain the subjective weight of the criteria from each decision maker. A fuzzy pattern recognition model is then developed to integrate the judgments from all the decision makers and the information from the criteria, under the supervision of the subjective weights. Finally a case study is given to show the efficiency and robustness of the proposed model.展开更多
This study addresses the problem of classifying emotional words based on recorded electroencephalogram (EEG) signals by the single-trial EEG classification technique. Emotional two-character Chinese words are used a...This study addresses the problem of classifying emotional words based on recorded electroencephalogram (EEG) signals by the single-trial EEG classification technique. Emotional two-character Chinese words are used as experimental materials. Positive words versus neutral words and negative words versus neutral words are classified, respectively, using the induced EEG signals. The method of temporally regularized common spatial patterns (TRCSP) is chosen to extract features from the EEG trials, and then single-trial EEG classification is achieved by linear discriminant analysis. Classification accuracies are between 55% and 65%. The statistical significance of the classification accuracies is confirmed by permutation tests, which shows the successful identification of emotional words and neutral ones, and also the ability to identify emotional words. In addition, 10 out of 15 subjects obtain significant classification accuracy for negative words versus neutral words while only 4 are significant for positive words versus neutral words, which demonstrate that negative emotions are more easily identified.展开更多
The efficiency of sample-based indices proposed to quantify the spatial distribution of trees is influenced by the structure of tree stands, environmental heterogeneity and degree of aggregation. We evaluated 10 commo...The efficiency of sample-based indices proposed to quantify the spatial distribution of trees is influenced by the structure of tree stands, environmental heterogeneity and degree of aggregation. We evaluated 10 commonly used distance-based and 10 density-based indices using two structurally different stands of wild pistachio trees in the Zagros woodlands, Iran, to assess the reliability of each in revealing stand structure in woodlands. All trees were completely stem-mapped in a nearly pure(40 ha) and a mixed(45 ha) stand. First, the inhomogeneous pair correlation function [g(r)] and the Clark-Evans index(CEI) were used as references to reveal the true spatial arrangement of all trees in these stands. The sampled data were then evaluated using the 20 indices.Sampling was undertaken in a grid based on a square lattice using square plots(30 m 9 30 m) and nearest neighbor distances at the sample points. The g(r) and CEI statistics showed that the wild pistachio trees were aggregated in both stands, although the degree of aggregation was markedly higher in the pure stand. Three distance- and six density-based indices statistically verified that the wild pistachio trees were aggregated in both stands. The distance-based Hines and Hines statistic(ht) and the densitybased standardised Morisita(Ip), patchiness(IP) and Cassie(CA) indices revealed aggregation of the trees in the two structurally different stands in the Zagros woodlands and the higher clumping in the pure stand, whereas the other indices were not sensitive enough.展开更多
In order to recognize the jamming pattern in anti-jamming, a novel fuzzy jamming recognition method based on statistic parameters of received signal’s power spectral density (PSD) is proposed. It exploits PSD’s shap...In order to recognize the jamming pattern in anti-jamming, a novel fuzzy jamming recognition method based on statistic parameters of received signal’s power spectral density (PSD) is proposed. It exploits PSD’s shape factor and skewness of received signal as classified characters of jamming pattern. After the mean center and variance of each jamming pattern are calculated by using some jamming samples, an exponential fuzzy membership function is used to calculate the membership value of the recognized sample. Finally, the jamming pattern of received signal is recognized by the maximum membership principle. The simulation results show that the proposed algorithm can recognize common eight jamming patterns accurately.展开更多
This paper deals with the application of Acousto-ultrasonics,in con- junction with Pattern Recognition and Classification techniques,to the identification of residual impact properties of a class of polymeric material...This paper deals with the application of Acousto-ultrasonics,in con- junction with Pattern Recognition and Classification techniques,to the identification of residual impact properties of a class of polymeric material,namely,Polyvinylchlo- ride(PVC).PVC specimens of different low-energy repeated impact damage states are processed by Acousto-ultrasonics(AU)to retrieve AU signals in the form of dig- italized records.These AU signals are grouped as distinct classes,each pertaining to a known level of repeated impact damage.Describing features of these AU signals are used to build Pattern Recognition(PR)Classifiers.These classifiers are used to identify unknown damage states in other PVC specimens by classifying the re- trieved AU signals as belonging to one of the classes.The obtained results indicate that Acousto-ultrasonics in combination with Pattern Recognition and Classification techniques can be used for the quantitative non-destructive identification of damage states in PVC specimens of unknown low-energy repeated impact conditions.展开更多
We present a new pattern recognition system based on moving average and linear discriminant analysis (LDA), which can be used to process the original signal of the new polymer quartz piezoelectric crystal air-sensit...We present a new pattern recognition system based on moving average and linear discriminant analysis (LDA), which can be used to process the original signal of the new polymer quartz piezoelectric crystal air-sensitive sensor system we designed, called the new e-nose. Using the new e-nose, we obtain the template datum of Chinese spirits via a new pattern recognition system. To verify the effectiveness of the new pattern recognition system, we select three kinds of Chinese spirits to test, our results confirm that the new pattern recognition system can perfectly identify and distinguish between the Chinese spirits.展开更多
基金supported by the National Key Research and Development Program of China(2021YFB3200400)the National Natural Science Foundation of China(62371299,62301314,and 62020106006)the China Postdoctoral Science Foundation(2023M732198).
文摘As information acquisition terminals for artificial olfaction,chemiresistive gas sensors are often troubled by their cross-sensitivity,and reducing their cross-response to ambient gases has always been a difficult and important point in the gas sensing area.Pattern recognition based on sensor array is the most conspicuous way to overcome the cross-sensitivity of gas sensors.It is crucial to choose an appropriate pattern recognition method for enhancing data analysis,reducing errors and improving system reliability,obtaining better classification or gas concentration prediction results.In this review,we analyze the sensing mechanism of crosssensitivity for chemiresistive gas sensors.We further examine the types,working principles,characteristics,and applicable gas detection range of pattern recognition algorithms utilized in gas-sensing arrays.Additionally,we report,summarize,and evaluate the outstanding and novel advancements in pattern recognition methods for gas identification.At the same time,this work showcases the recent advancements in utilizing these methods for gas identification,particularly within three crucial domains:ensuring food safety,monitoring the environment,and aiding in medical diagnosis.In conclusion,this study anticipates future research prospects by considering the existing landscape and challenges.It is hoped that this work will make a positive contribution towards mitigating cross-sensitivity in gas-sensitive devices and offer valuable insights for algorithm selection in gas recognition applications.
基金supported by the National Natural Science Foundation of China (Grant No. 42061004)the Joint Special Project of Agricultural Basic Research of Yunnan Province (Grant No. 202101BD070001093)the Youth Special Project of Xingdian Talent Support Program of Yunnan Province
文摘Abrupt near-surface temperature changes in mountainous areas are a special component of the mountain climate system.Fast and accurate measurements of the locations,intensity,and width of the near-surface changes are necessary but highly difficult due to the complicated environmental conditions and instrumental issues.This paper develops a spatial pattern recognition method to measure the near-surface high temperature increase(NSHTI),one of the lesser-attended changes.First,raster window measurement was proposed to calculate the temperature lapse rate using MODIS land surface temperature and SRTM DEM data.It fully considers the terrain heights of two neighboring cells on opposite or adjacent slopes with a moving window of 3×3 cell size.Second,a threshold selection was performed to identify the NSHTI cells using a threshold of-0.65℃/100 m.Then,the NSHTI strips were parameterized through raster vectorization and spatial analysis.Taking Yunnan,a mountainous province in southwestern China,as the study area,the results indicate that the NSHTI cells concentrate in a strip-like pattern along the mountains and valleys,and the strips are almost parallel to the altitude contours with a slight northward uplift.Also,they are located mostly at a 3/5 height of high mountains or within 400 m from the valley floors,where the controlling topographic index is the altitude of the terrain trend surface but not the absolute elevation and the topographic uplift height and cutting depth.Additionally,the NSHTI intensity varies with the geographic locations and the proportions increase with an exponential trend,and the horizontal width has a mean of about 1000 m and a maximum of over 5000 m.The result demonstrates that the proposed method can effectively recognize NSHTI boundaries over mountains,providing support for the modeling of weather and climate systems and the development of mountain resources.
文摘The pharmaceutical industry increasingly values medicinal plants due to their perceived safety and costeffectiveness compared to modern drugs.Throughout the extensive history of medicinal plant usage,various plant parts,including flowers,leaves,and roots,have been acknowledged for their healing properties and employed in plant identification.Leaf images,however,stand out as the preferred and easily accessible source of information.Manual plant identification by plant taxonomists is intricate,time-consuming,and prone to errors,relying heavily on human perception.Artificial intelligence(AI)techniques offer a solution by automating plant recognition processes.This study thoroughly examines cutting-edge AI approaches for leaf image-based plant identification,drawing insights from literature across renowned repositories.This paper critically summarizes relevant literature based on AI algorithms,extracted features,and results achieved.Additionally,it analyzes extensively used datasets in automated plant classification research.It also offers deep insights into implemented techniques and methods employed for medicinal plant recognition.Moreover,this rigorous review study discusses opportunities and challenges in employing these AI-based approaches.Furthermore,in-depth statistical findings and lessons learned from this survey are highlighted with novel research areas with the aim of offering insights to the readers and motivating new research directions.This review is expected to serve as a foundational resource for future researchers in the field of AI-based identification of medicinal plants.
文摘Dynamic signature is a biometric modality that recognizes an individual’s anatomic and behavioural characteristics when signing their name. The rampant case of signature falsification (Identity Theft) was the key motivating factor for embarking on this study. This study was necessitated by the damages and dangers posed by signature forgery coupled with the intractable nature of the problem. The aim and objectives of this study is to design a proactive and responsive system that could compare two signature samples and detect the correct signature against the forged one. Dynamic Signature verification is an important biometric technique that aims to detect whether a given signature is genuine or forged. In this research work, Convolutional Neural Networks (CNNsor ConvNet) which is a class of deep, feed forward artificial neural networks that has successfully been applied to analysing visual imagery was used to train the model. The signature images are stored in a file directory structure which the Keras Python library can work with. Then the CNN was implemented in python using the Keras with the TensorFlow backend to learn the patterns associated with the signature. The result showed that for the same CNNs-based network experimental result of average accuracy, the larger the training dataset, the higher the test accuracy. However, when the training dataset are insufficient, better results can be obtained. The paper concluded that by training datasets using CNNs network, 98% accuracy in the result was recorded, in the experimental part, the model achieved a high degree of accuracy in the classification of the biometric parameters used.
文摘Objective:To explore which pattern recognition receptors(PRRs)play a key role in the development of hand,foot,and mouth disease(HFMD)by analyzing PRR-associated genes.Methods:We conducted a comparative analysis of PRR-associated gene expression in human peripheral blood mononuclear cells(PBMCs)infected with enterovirus 71(EV-A71)which were derived from patients with HFMD of different severities and at different stages.A total of 30 PRR-associated genes were identified as significantly upregulated both over time and across different EV-A71 isolates.Subsequently,ELISA was employed to quantify the expression of the six most prominent genes among these 30 identified genes,specifically,BST2,IRF7,IFI16,TRIM21,MX1,and DDX58.Results:Compared with those at the recovery stage,the expression levels of BST2(P=0.027),IFI16(P=0.016),MX1(P=0.046)and DDX58(P=0.008)in the acute stage of infection were significantly upregulated,while no significant difference in the expression levels of IRF7(P=0.495)and TRIM21(P=0.071)was found between different stages of the disease.The expression levels of BST2,IRF7,IFI16 and MX1 were significantly higher in children infected with single pathogen than those infected with mixed pathogens,and BST2,IRF7,IFI16 and MX1 expression levels were significantly lower in coxsackie B virus(COXB)positive patients than the negative patients.Expression levels of one or more of BST2,IRF7,IFI16,TRIM21,MX1 and DDX58 genes were correlated with PCT levels,various white blood cell counts,and serum antibody levels that reflect disease course of HFMD.Aspartate aminotransferase was correlated with BST2,MX1 and DDX58 expression levels.Conclusions:PRR-associated genes likely initiate the immune response in patients at the acute stage of HFMD.
文摘The combination of pyrolysis high resolution gas chromatography and pat- tern recognition techniques is a powerful tool for the classification of traditional Chinese drug.A study has been completed on 55 Beimu samples of five different geographic origins: Eastern China.Central China.South-western China,North-western China and North-eastern China.Principal component analysis and SIMCA are applied to effectively classifying the samples according to the origin of the plants.The chemical information contained in the high resolution gas chromatographic data is sufficient to characterize the geographic origin of sam- pies.
基金The Fundamental Research Funds for the Central Universities,the Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYLX_0177)
文摘In order to improve the accuracy of travel demand forecast and considering the distribution of travel behaviors within time dimension, a trip chaining pattern recognition model was established based on activity purposes by applying three methods: the support vector machine (SVM) model, the radial basis function neural network (RBFNN) model and the multinomial logit (MNL) model. The effect of explanatory factors on trip chaining behaviors and their contribution to model performace were investigated by sensitivity analysis. Results show that the SVM model has a better performance than the RBFNN model and the MNL model due to its higher overall and partial accuracy, indicating its recognition advantage under a smai sample size scenario. It is also proved that the SVM model is capable of estimating the effect of multi-category factors on trip chaining behaviors more accurately. The different contribution of explanatory, factors to trip chaining pattern recognition reflects the importance of refining trip chaining patterns ad exploring factors that are specific to each pattern. It is shown that the SVM technology in travel demand forecast modeling and analysis of explanatory variable effects is practical.
基金The National Natural Science Foundation of China (No70571087)the National Science Fund for Distinguished Young Scholarsof China (No70625005)
文摘The concept of the degree of similarity between interval-valued intuitionistic fuzzy sets (IVIFSs) is introduced, and some distance measures between IVIFSs are defined based on the Hamming distance, the normalized Hamming distance, the weighted Hamming distance, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance, etc. Then, by combining the Hausdorff metric with the Hamming distance, the Euclidean distance and their weighted versions, two other similarity measures between IVIFSs, i. e., the weighted Hamming distance based on the Hausdorff metric and the weighted Euclidean distance based on the Hausdorff metric, are defined, and then some of their properties are studied. Finally, based on these distance measures, some similarity measures between IVIFSs are defined, and the similarity measures are applied to pattern recognitions with interval-valued intuitionistic fuzzy information.
文摘A hybrid network is presented for spatio-temporal feature detecting, which is called TS-LM-SOFM. Its top layer is a novel single layer temporal sequence recognizer called TS which can transform sparse temporal sequential pattern into abstract spatial feature representations. The bottom layer of TS-LM-SOFM, a modified self-organizing feature map, is used as a spatial feature detector. A learning matrix connects the two layers. Experiments show that the hybrid network can well capture the spatio-temporal features of input signals.
基金supported in part by the National Nature Science Fundation(61174009,61203323)Youth Foundation of Hebei Province(F2016202327)+3 种基金the Colleges and Universities in Hebei Province Science and Technology Research Project(ZC2016020)supported in part by Key Project of NSFC(61533009)111 Project(B08015)Research Project(JCYJ20150403161923519)
文摘Based on the regularity nature of lower-limb motion,an intent pattern recognition approach for above-knee prosthesis is proposed in this paper. To remedy the defects of recognizer based on electromyogram(EMG), we develop a pure mechanical sensor architecture for intent pattern recognition of lower-limb motion. The sensor system is composed of an accelerometer, a gyroscope mounted on the prosthetic socket, and two pressure sensors mounted under the sole. To compensate the delay in the control of prosthesis, the signals in the stance phase are used to predict the terrain and speed in the swing phase. Specifically, the intent pattern recognizer utilizes intraclass correlation coefficient(ICC) according to the Cartesian product of walking speed and terrain. Moreover, the sensor data are fused via DempsterShafer's theory. And hidden Markov model(HMM) is used to recognize the realtime motion state with the reference of the prior step. The proposed method can infer the prosthesis user's intent of walking on different terrain, which includes level ground,stair ascent, stair descent, up and down ramp. The experiments demonstrate that the intent pattern recognizer is capable of identifying five typical terrain-modes with the rate of 95.8%. The outcome of this investigation is expected to substantially improve the control performance of powered above-knee prosthesis.
基金Project Sponsored by Excellent Youth Teacher Foundation of Education Ministry of China and Provincial Natural Science Foundation of Hebei(598275)
文摘A new pattern recognition method of shape was presented based on artificial neural network theory.The method avoids the defects of shape pattern recognition with polynomials and it has strong disturbance resistance.It has been proved to be superior in recognizing different shape patterns by identifying many sorts of working sample books which the results are known.
基金supported by National Key Scientific Project for New Drug Discovery and Development of China (Grant no. 2009ZX09301-012)
文摘In this paper, the feasibility and advantages of employing high performance liquid chromatographic (HPLC) fingerprints combined with pattern recognition techniques for quality control of Shenmai injection were investigated and demonstrated. The Similarity Evaluation System was employed to evaluate the similarities of samples of Shenmai injection, and the HPLC generated chromatographic data were analyzed using hierarchical clustering analysis (HCA) and soft independent modeling of class analogy (SIMCA). Consistent results were obtained to show that the authentic samples and the blended samples were successfully classified by SIMCA, which could be applied to accurate discrimination and quality control of Shenmai injection. Furthermore, samples could also be grouped in accordance with manufacturers. Our results revealed that the developed method has potential perspective for the original discrimination and quality control of Shenmai injection.
基金Project(107021) supported by the Key Foundation of Chinese Ministry of Education Project(2009643013) supported by China Scholarship Fund
文摘In order to accurately and quickly identify the safety status pattern of coalmines,a new safety status pattern recognition method based on the extension neural network (ENN) was proposed,and the design of structure of network,the rationale of recognition algorithm and the performance of proposed method were discussed in detail.The safety status pattern recognition problem of coalmines can be regard as a classification problem whose features are defined in a range,so using the ENN is most appropriate for this problem.The ENN-based recognition method can use a novel extension distance to measure the similarity between the object to be recognized and the class centers.To demonstrate the effectiveness of the proposed method,a real-world application on the geological safety status pattern recognition of coalmines was tested.Comparative experiments with existing method and other traditional ANN-based methods were conducted.The experimental results show that the proposed ENN-based recognition method can identify the safety status pattern of coalmines accurately with shorter learning time and simpler structure.The experimental results also confirm that the proposed method has a better performance in recognition accuracy,generalization ability and fault-tolerant ability,which are very useful in recognizing the safety status pattern in the process of coal production.
基金Dr. Steve Jones, Scientific Advisor of the Canon Foundation for Scientific Research (7200 The Quorum, Oxford Business Park, Oxford OX4 2JZ, England). Canon Foundation for Scientific Research funded the UPC 2013 tuition fees of the corresponding author during her writing this article
文摘In computational physics proton transfer phenomena could be viewed as pattern classification problems based on a set of input features allowing classification of the proton motion into two categories: transfer 'occurred' and transfer 'not occurred'. The goal of this paper is to evaluate the use of artificial neural networks in the classification of proton transfer events, based on the feed-forward back propagation neural network, used as a classifier to distinguish between the two transfer cases. In this paper, we use a new developed data mining and pattern recognition tool for automating, controlling, and drawing charts of the output data of an Empirical Valence Bond existing code. The study analyzes the need for pattern recognition in aqueous proton transfer processes and how the learning approach in error back propagation (multilayer perceptron algorithms) could be satisfactorily employed in the present case. We present a tool for pattern recognition and validate the code including a real physical case study. The results of applying the artificial neural networks methodology to crowd patterns based upon selected physical properties (e.g., temperature, density) show the abilities of the network to learn proton transfer patterns corresponding to properties of the aqueous environments, which is in turn proved to be fully compatible with previous proton transfer studies.
文摘This paper develops a fuzzy pattern recognition model for group decision making to solve the problem of lectotype optimization of offshore platforms. The lack of data and the inexact or incomplete information for criteria are the main cause of uncertainty in the evaluation process, therefore it is necessary to integrate the judgments from different decision makers with different experience, knowledge and preference. This paper first uses a complementary principle based pairwise comparison method to obtain the subjective weight of the criteria from each decision maker. A fuzzy pattern recognition model is then developed to integrate the judgments from all the decision makers and the information from the criteria, under the supervision of the subjective weights. Finally a case study is given to show the efficiency and robustness of the proposed model.
基金The National Natural Science Foundation of China(No.61375118)the Program for New Century Excellent Talents in University of China(No.NCET-12-0115)
文摘This study addresses the problem of classifying emotional words based on recorded electroencephalogram (EEG) signals by the single-trial EEG classification technique. Emotional two-character Chinese words are used as experimental materials. Positive words versus neutral words and negative words versus neutral words are classified, respectively, using the induced EEG signals. The method of temporally regularized common spatial patterns (TRCSP) is chosen to extract features from the EEG trials, and then single-trial EEG classification is achieved by linear discriminant analysis. Classification accuracies are between 55% and 65%. The statistical significance of the classification accuracies is confirmed by permutation tests, which shows the successful identification of emotional words and neutral ones, and also the ability to identify emotional words. In addition, 10 out of 15 subjects obtain significant classification accuracy for negative words versus neutral words while only 4 are significant for positive words versus neutral words, which demonstrate that negative emotions are more easily identified.
基金supported by Vice Chancellor for Research,Shiraz University,IranErasmus Mundus scholarship for travel to Goettingen,Germany
文摘The efficiency of sample-based indices proposed to quantify the spatial distribution of trees is influenced by the structure of tree stands, environmental heterogeneity and degree of aggregation. We evaluated 10 commonly used distance-based and 10 density-based indices using two structurally different stands of wild pistachio trees in the Zagros woodlands, Iran, to assess the reliability of each in revealing stand structure in woodlands. All trees were completely stem-mapped in a nearly pure(40 ha) and a mixed(45 ha) stand. First, the inhomogeneous pair correlation function [g(r)] and the Clark-Evans index(CEI) were used as references to reveal the true spatial arrangement of all trees in these stands. The sampled data were then evaluated using the 20 indices.Sampling was undertaken in a grid based on a square lattice using square plots(30 m 9 30 m) and nearest neighbor distances at the sample points. The g(r) and CEI statistics showed that the wild pistachio trees were aggregated in both stands, although the degree of aggregation was markedly higher in the pure stand. Three distance- and six density-based indices statistically verified that the wild pistachio trees were aggregated in both stands. The distance-based Hines and Hines statistic(ht) and the densitybased standardised Morisita(Ip), patchiness(IP) and Cassie(CA) indices revealed aggregation of the trees in the two structurally different stands in the Zagros woodlands and the higher clumping in the pure stand, whereas the other indices were not sensitive enough.
基金Sponsored by National Nature Science Foundation of China ( 61072078)China Postdoctoral Science Foundation Funded Project ( 20090461426)Jiangsu Planned Projects for Postdoctoral Research Funds ( 0902039C)
文摘In order to recognize the jamming pattern in anti-jamming, a novel fuzzy jamming recognition method based on statistic parameters of received signal’s power spectral density (PSD) is proposed. It exploits PSD’s shape factor and skewness of received signal as classified characters of jamming pattern. After the mean center and variance of each jamming pattern are calculated by using some jamming samples, an exponential fuzzy membership function is used to calculate the membership value of the recognized sample. Finally, the jamming pattern of received signal is recognized by the maximum membership principle. The simulation results show that the proposed algorithm can recognize common eight jamming patterns accurately.
文摘This paper deals with the application of Acousto-ultrasonics,in con- junction with Pattern Recognition and Classification techniques,to the identification of residual impact properties of a class of polymeric material,namely,Polyvinylchlo- ride(PVC).PVC specimens of different low-energy repeated impact damage states are processed by Acousto-ultrasonics(AU)to retrieve AU signals in the form of dig- italized records.These AU signals are grouped as distinct classes,each pertaining to a known level of repeated impact damage.Describing features of these AU signals are used to build Pattern Recognition(PR)Classifiers.These classifiers are used to identify unknown damage states in other PVC specimens by classifying the re- trieved AU signals as belonging to one of the classes.The obtained results indicate that Acousto-ultrasonics in combination with Pattern Recognition and Classification techniques can be used for the quantitative non-destructive identification of damage states in PVC specimens of unknown low-energy repeated impact conditions.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2013AA030901)
文摘We present a new pattern recognition system based on moving average and linear discriminant analysis (LDA), which can be used to process the original signal of the new polymer quartz piezoelectric crystal air-sensitive sensor system we designed, called the new e-nose. Using the new e-nose, we obtain the template datum of Chinese spirits via a new pattern recognition system. To verify the effectiveness of the new pattern recognition system, we select three kinds of Chinese spirits to test, our results confirm that the new pattern recognition system can perfectly identify and distinguish between the Chinese spirits.