Spinal cord impairment involving motor neuron degeneration and demyelination can cause lifelong disabilities,but effective clinical interventions for restoring neurological functions have yet to be developed.In early ...Spinal cord impairment involving motor neuron degeneration and demyelination can cause lifelong disabilities,but effective clinical interventions for restoring neurological functions have yet to be developed.In early spinal cord development,neural progenitors of the motor neuron(pMN)domain,defined by the expression of oligodendrocyte transcription factor 2(OLIG2),in the ventral spinal cord first generate motor neurons and then switch the fate to produce myelin-forming oligodendrocytes.Given their differentiation potential,pMN progenitors could be a valuable cell source for cell therapy in relevant neurological conditions such as spinal cord injury.However,fast generation and expansion of pMN progenitors in vitro while conserving their differentiation potential has so far been technically challenging.In this study,based on chemical screening,we have developed a new recipe for efficient induction of pMN progenitors from human embryonic stem cells.More importantly,these OLIG2+pMN progenitors can be stably maintained for multiple passages without losing their ability to produce spinal motor neurons and oligodendrocytes rapidly.Our results suggest that these self-renewing pMN progenitors could potentially be useful as a renewable source of cell transplants for spinal cord injury and demyelinating disorders.展开更多
The Lewis acidity scale of boron trihalides BX3 (X=F, Cl, Br, I) and character of the boron-halogen bonds have been studied by means of DV-Xa approach. Present results show that the acid strength of boron trihalides i...The Lewis acidity scale of boron trihalides BX3 (X=F, Cl, Br, I) and character of the boron-halogen bonds have been studied by means of DV-Xa approach. Present results show that the acid strength of boron trihalides increases in the order BF3<BCl3<BBr3<BI3, in excellent agreement with experiments. Based on boron-halogen bonding character, the valence of boron atom in boron compounds can be considered as equal to five instead of three which seems to be more reasonable.展开更多
At present,China is the world’s largest consumer of iron ore, nickel,copper,steel,coal and cement,and the world’s second largest consumer of oil,alumina,electricity and energy.Currently, China is creating 4~5% of t...At present,China is the world’s largest consumer of iron ore, nickel,copper,steel,coal and cement,and the world’s second largest consumer of oil,alumina,electricity and energy.Currently, China is creating 4~5% of the world’s GDP by consuming 8.92% of the world’s oil,32.1% of raw coal,30.7% of iron ore,28% of steel.20% of alumina and 50% of cement.展开更多
A new strategy to fabricate oxygen-promoted Cu,N co-doped carbon(OP-CuN@C)composites is reported.The strategy consists of only two simple steps:chemical polymerization and high temperature carbonization.Electrochemica...A new strategy to fabricate oxygen-promoted Cu,N co-doped carbon(OP-CuN@C)composites is reported.The strategy consists of only two simple steps:chemical polymerization and high temperature carbonization.Electrochemical measurements were conducted to investigate the catalytic activity and mechanism of ORR on the resulting samples.All the electrochemical results indicate that OP-CuN@C exhibits the best ORR catalytic activity.The ORR onset potential of OP-CuN@C is slightly lower than that of commercial Pt/C catalyst.The good performance is attributed to the large specific surface area,high content of heteroatoms(pyridinic,graphitic nitrogen,and oxygen atom)and synergistic effect between divalent copper and nitrogen dopant.展开更多
Ce-incorporated apatite(Ce-HA) nano-scale particles with different Ce percentage contents(atomic ratio of Ce to Ce + Ca is 5%,10%and 20%,respectively) were synthesized via a simple wet chemical method in this stu...Ce-incorporated apatite(Ce-HA) nano-scale particles with different Ce percentage contents(atomic ratio of Ce to Ce + Ca is 5%,10%and 20%,respectively) were synthesized via a simple wet chemical method in this study.The crystal structure,chemical groups,thermal stability,crystal morphologies and crystal sizes of the Ce-HA nano-particles were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and transmission electron microscopy(TEM).The influences of reaction temperature,reaction time,pH value,and the atomic ratio of Ce to Ce + Ca on the structure and performance of Ce-HA particles were studied.The results show that the lattice constants,particle sizes,crystallinity and thermal stability of Ce-HA vary with the doped Ce contents.With the increase of Ce content,the lattice constants of the Ce-HA nano-particles remarkably increase but the particle size,crystallinity and thermal stability gradually decrease.The reaction temperature as well as the reaction time has no significant effect on the properties of the final products,while the pH value has a direct relationship with their final chemical composition.The obtained Ce-HA nanosize particles possess potential application in preparing artificial bone implants,bone tissue engineering scaffold and other bioactive coatings.展开更多
Nano-scale Tb-incorporated apatite (nano-Tb-AP) particles with different Tb contents (Tb/(Tb+Ca)) of 0%, 5%, 10% and 20% were synthesized through a simple wet chemical method in this study. The crystal structur...Nano-scale Tb-incorporated apatite (nano-Tb-AP) particles with different Tb contents (Tb/(Tb+Ca)) of 0%, 5%, 10% and 20% were synthesized through a simple wet chemical method in this study. The crystal structure, thermal stabilities, chemical groups, crystal morphologies and crystal sizes of the nano--Tb-AP particles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM), respectively. It was found that lattice constants, particle sizes, crystalline and thermal stability varied with the doped Tb contents. With the increasing of Tb content, the lattice constants, particle size, length/diameter ratio, crystalline and thermal stability of nano-Tb-AP gradually decrease. Especially, almost all the 20%Tb-AP nano particles had been decomposed at 1200 ℃ while only a few of the decomposed products (β-TCP) were detected in the Tb-free nano apatite powders: This kind of nano-scale Tb-incorporated apatite exhibits an extremely potential clinic application because it integrates both the excellent biological functions of Tb element and apatite in human body.展开更多
基金unding This study was supported by grants from the National Key R&D Program of China(2018YFA0107200 and 2020YFA0113101)the National Natural Science Foundation of China(81571094,81322016,32070866,and 31771643)+4 种基金the Program of Shanghai Academic Research Leader(17XD1404800)the Biotechnology and Biological Sciences Research Council(BB/S000844/1 and BB/S008934/1)Newton Advanced Fellowship(AMS-NAF1-Li),Shanghai Science and Technology Committee(19JC1413200)the program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning(1710000009)the Shanghai Key Laboratory of Reproductive Medicine.
文摘Spinal cord impairment involving motor neuron degeneration and demyelination can cause lifelong disabilities,but effective clinical interventions for restoring neurological functions have yet to be developed.In early spinal cord development,neural progenitors of the motor neuron(pMN)domain,defined by the expression of oligodendrocyte transcription factor 2(OLIG2),in the ventral spinal cord first generate motor neurons and then switch the fate to produce myelin-forming oligodendrocytes.Given their differentiation potential,pMN progenitors could be a valuable cell source for cell therapy in relevant neurological conditions such as spinal cord injury.However,fast generation and expansion of pMN progenitors in vitro while conserving their differentiation potential has so far been technically challenging.In this study,based on chemical screening,we have developed a new recipe for efficient induction of pMN progenitors from human embryonic stem cells.More importantly,these OLIG2+pMN progenitors can be stably maintained for multiple passages without losing their ability to produce spinal motor neurons and oligodendrocytes rapidly.Our results suggest that these self-renewing pMN progenitors could potentially be useful as a renewable source of cell transplants for spinal cord injury and demyelinating disorders.
基金Project supported by the National Natural Science Foundation of China.
文摘The Lewis acidity scale of boron trihalides BX3 (X=F, Cl, Br, I) and character of the boron-halogen bonds have been studied by means of DV-Xa approach. Present results show that the acid strength of boron trihalides increases in the order BF3<BCl3<BBr3<BI3, in excellent agreement with experiments. Based on boron-halogen bonding character, the valence of boron atom in boron compounds can be considered as equal to five instead of three which seems to be more reasonable.
文摘At present,China is the world’s largest consumer of iron ore, nickel,copper,steel,coal and cement,and the world’s second largest consumer of oil,alumina,electricity and energy.Currently, China is creating 4~5% of the world’s GDP by consuming 8.92% of the world’s oil,32.1% of raw coal,30.7% of iron ore,28% of steel.20% of alumina and 50% of cement.
基金Funded in Part by the National Key Research and Development Program of China(2017YFB0102801)。
文摘A new strategy to fabricate oxygen-promoted Cu,N co-doped carbon(OP-CuN@C)composites is reported.The strategy consists of only two simple steps:chemical polymerization and high temperature carbonization.Electrochemical measurements were conducted to investigate the catalytic activity and mechanism of ORR on the resulting samples.All the electrochemical results indicate that OP-CuN@C exhibits the best ORR catalytic activity.The ORR onset potential of OP-CuN@C is slightly lower than that of commercial Pt/C catalyst.The good performance is attributed to the large specific surface area,high content of heteroatoms(pyridinic,graphitic nitrogen,and oxygen atom)and synergistic effect between divalent copper and nitrogen dopant.
基金supported by the National Natural Science Foundation of China(Nos.51072159 and 51273159)the Fundamental Research Funds for the Central University and Program for New Century Excellent Talents in Universities(Chinese Ministry of Education,NCET-08-0444(2301G107aaa))
文摘Ce-incorporated apatite(Ce-HA) nano-scale particles with different Ce percentage contents(atomic ratio of Ce to Ce + Ca is 5%,10%and 20%,respectively) were synthesized via a simple wet chemical method in this study.The crystal structure,chemical groups,thermal stability,crystal morphologies and crystal sizes of the Ce-HA nano-particles were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and transmission electron microscopy(TEM).The influences of reaction temperature,reaction time,pH value,and the atomic ratio of Ce to Ce + Ca on the structure and performance of Ce-HA particles were studied.The results show that the lattice constants,particle sizes,crystallinity and thermal stability of Ce-HA vary with the doped Ce contents.With the increase of Ce content,the lattice constants of the Ce-HA nano-particles remarkably increase but the particle size,crystallinity and thermal stability gradually decrease.The reaction temperature as well as the reaction time has no significant effect on the properties of the final products,while the pH value has a direct relationship with their final chemical composition.The obtained Ce-HA nanosize particles possess potential application in preparing artificial bone implants,bone tissue engineering scaffold and other bioactive coatings.
基金supported by the Fundamental Research Funds for the Central Universitythe National Natural Science Foundation of China (No. 51072159+1 种基金51273159)Program for New Century Excellent Talents in Universities (Chinese Ministry of Education,NCET-08-0444)
文摘Nano-scale Tb-incorporated apatite (nano-Tb-AP) particles with different Tb contents (Tb/(Tb+Ca)) of 0%, 5%, 10% and 20% were synthesized through a simple wet chemical method in this study. The crystal structure, thermal stabilities, chemical groups, crystal morphologies and crystal sizes of the nano--Tb-AP particles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM), respectively. It was found that lattice constants, particle sizes, crystalline and thermal stability varied with the doped Tb contents. With the increasing of Tb content, the lattice constants, particle size, length/diameter ratio, crystalline and thermal stability of nano-Tb-AP gradually decrease. Especially, almost all the 20%Tb-AP nano particles had been decomposed at 1200 ℃ while only a few of the decomposed products (β-TCP) were detected in the Tb-free nano apatite powders: This kind of nano-scale Tb-incorporated apatite exhibits an extremely potential clinic application because it integrates both the excellent biological functions of Tb element and apatite in human body.