China is in a transitional period between urban renewal and industrial change.In this period,the focus has been on the suburbanization of enterprises and land transformation in old industrial areas,particularly areas ...China is in a transitional period between urban renewal and industrial change.In this period,the focus has been on the suburbanization of enterprises and land transformation in old industrial areas,particularly areas with chemical industries.A life cycle theoretical framework was established to develop chemical industrial zones in the context of urban expansion and land function conversion.The long-term historical processes and mechanisms that transformed a typical old chemical industry area along the Yangtze River,Yanziji Area of Nanjing City were unveiled and comparatively analyzed.The study found that the entire life cycle of the case study area was formed through the combined action of different influencing factors.Traditional industrial location factors played important roles during the rise and continuity of the chemical industry zone,while unconventional environmental regulations and government policies drove its decline and transformation.In the transformation of the old chemical zone,the renewal and redevelopment of industrial land into higher-value residential land is a key link determining the feasibility of government fund compensation and the circulation of capital.These findings demonstrate that regional control and environmental regulation play crucial roles in determining the location of polluting industries and the renewal of urban industrial areas.This research enhances the understanding of the development history and reconstruction of chemical industry clusters and plots within megacities at a finer geographic scale.展开更多
To elucidate the air pollution characteristics of northern China, airborne PM_10(atmospheric dynamic equivalent diameter ≤ 10 μm) and PM_(2.5)(atmospheric dynamic equivalent diameter ≤ 2.5 μm) were sampled i...To elucidate the air pollution characteristics of northern China, airborne PM_10(atmospheric dynamic equivalent diameter ≤ 10 μm) and PM_(2.5)(atmospheric dynamic equivalent diameter ≤ 2.5 μm) were sampled in three different functional areas(Yuzhong County,Xigu District and Chengguan District) of Lanzhou, and their chemical composition(elements, ions, carbonaceous species) was analyzed. The results demonstrated that the highest seasonal mean concentrations of PM_10(369.48 μg/m^3) and PM_(2.5)(295.42 μg/m^3) were detected in Xigu District in the winter, the lowest concentration of PM_(2.5)(53.15 μg/m^3) was observed in Yuzhong District in the fall and PM_10(89.60 μg/m^3) in Xigu District in the fall.The overall average OC/EC(organic carbon/elemental carbon) value was close to the representative OC/EC ratio for coal consumption, implying that the pollution of Lanzhou could be attributed to the burning of coal. The content of SNA(the sum of sulfate, nitrate,ammonium, SNA) in PM_(2.5)in Yuzhong County was generally lower than that at other sites in all seasons. The content of SNA in PM_(2.5)and PM_10 in Yuzhong County was generally lower than that at other sites in all seasons(0.24–0.38), indicating that the conversion ratios from precursors to secondary aerosols in the low concentration area was slower than in the area with high and intense pollutants. Six primary particulate matter sources were chosen based on positive matrix factorization(PMF) analysis, and emissions from dust, secondary aerosols, and coal burning were identified to be the primary sources responsible for the particle pollution in Lanzhou.展开更多
The net effect of tillage erosion on soil properties would be associated with the spatial variation in soil constituents,and therefore plays an important role in ecological agriculture.We conducted a consecutive tilla...The net effect of tillage erosion on soil properties would be associated with the spatial variation in soil constituents,and therefore plays an important role in ecological agriculture.We conducted a consecutive tillage by hoeing 15 times during a period with no rainfall in the two slope landscapes(a linear slope and complex slope) of the Yangtze Three Gorges reservoir areas,to examine the relationship between soil erosion rates and the variations in soil chemical properties and compare the effects of soil redistribution on SOC and nutrients between the linear and complex slopes.After the simulated tillage,notable changes in 137 Cs inventories of the soil occurred in the summit and toeslope positions on the linear slope,while there were significant changes in 137 Cs inventories at convex and concave positions on the complex slope.Soil profile disappeared at the summit slope boundary,with the exposure area of 16.0% and 7.6% of the experimental plot,respectively,for the linear and complex slopes due to no soil replacement.Soil organic C and nutrients were completely depleted with the disappearance of soil profiles at soil eroding zones,whereas a remarkable increase in SOC,total N and available nutrient concentrations of the post-tillage surface soil and a decrease in total nutrient concentrations(P and K) were found at depositional zones on the linear slope.For the complex slope,however,changes in SOC and nutrient concentrations of the post-tillage surface soil exhibited a patterndifferent from that on the linear slope,which showed a remarkable decrease in SOC and total nutrient concentrations but a slight increase in available nutrient concentrations after tillage in the toeslope position.Due to the gradual increase in soil depth from top to bottom of the slope,SOC and nutrient inventories in the soil profiles were significantly correlated with soil redistribution rates on both the linear and complex slopes.Tillage causes remarkable changes of soil chemical properties in the surface soil layer and soil profile,and increases SOC and nutrient inventories for the soil profile downslope in steeply sloping landscapes.展开更多
基金Under the auspices of the National Natural Science Foundation of China(No.41901156,42071164)Project of the Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences(No.NIGLAS2019QD011)。
文摘China is in a transitional period between urban renewal and industrial change.In this period,the focus has been on the suburbanization of enterprises and land transformation in old industrial areas,particularly areas with chemical industries.A life cycle theoretical framework was established to develop chemical industrial zones in the context of urban expansion and land function conversion.The long-term historical processes and mechanisms that transformed a typical old chemical industry area along the Yangtze River,Yanziji Area of Nanjing City were unveiled and comparatively analyzed.The study found that the entire life cycle of the case study area was formed through the combined action of different influencing factors.Traditional industrial location factors played important roles during the rise and continuity of the chemical industry zone,while unconventional environmental regulations and government policies drove its decline and transformation.In the transformation of the old chemical zone,the renewal and redevelopment of industrial land into higher-value residential land is a key link determining the feasibility of government fund compensation and the circulation of capital.These findings demonstrate that regional control and environmental regulation play crucial roles in determining the location of polluting industries and the renewal of urban industrial areas.This research enhances the understanding of the development history and reconstruction of chemical industry clusters and plots within megacities at a finer geographic scale.
基金supported by the Special Scientific Research Funds for Environment Protection Commonweal Section (Nos.201409003,201309011)the National Natural Science Foundation of China (No.41375132)+2 种基金the CAS Strategic Priority Research Program (No.XDB05030400)the National Basic Research Program of China (No.2014CB441203)the Beijing Municipal Science and Technology Plan (No.Z131100006113013)
文摘To elucidate the air pollution characteristics of northern China, airborne PM_10(atmospheric dynamic equivalent diameter ≤ 10 μm) and PM_(2.5)(atmospheric dynamic equivalent diameter ≤ 2.5 μm) were sampled in three different functional areas(Yuzhong County,Xigu District and Chengguan District) of Lanzhou, and their chemical composition(elements, ions, carbonaceous species) was analyzed. The results demonstrated that the highest seasonal mean concentrations of PM_10(369.48 μg/m^3) and PM_(2.5)(295.42 μg/m^3) were detected in Xigu District in the winter, the lowest concentration of PM_(2.5)(53.15 μg/m^3) was observed in Yuzhong District in the fall and PM_10(89.60 μg/m^3) in Xigu District in the fall.The overall average OC/EC(organic carbon/elemental carbon) value was close to the representative OC/EC ratio for coal consumption, implying that the pollution of Lanzhou could be attributed to the burning of coal. The content of SNA(the sum of sulfate, nitrate,ammonium, SNA) in PM_(2.5)in Yuzhong County was generally lower than that at other sites in all seasons. The content of SNA in PM_(2.5)and PM_10 in Yuzhong County was generally lower than that at other sites in all seasons(0.24–0.38), indicating that the conversion ratios from precursors to secondary aerosols in the low concentration area was slower than in the area with high and intense pollutants. Six primary particulate matter sources were chosen based on positive matrix factorization(PMF) analysis, and emissions from dust, secondary aerosols, and coal burning were identified to be the primary sources responsible for the particle pollution in Lanzhou.
基金the Special Support Foundation of Institute of Mountain Hazards and Environment,CASthe National Natural Science Foundation of China (Grant No.40771027)
文摘The net effect of tillage erosion on soil properties would be associated with the spatial variation in soil constituents,and therefore plays an important role in ecological agriculture.We conducted a consecutive tillage by hoeing 15 times during a period with no rainfall in the two slope landscapes(a linear slope and complex slope) of the Yangtze Three Gorges reservoir areas,to examine the relationship between soil erosion rates and the variations in soil chemical properties and compare the effects of soil redistribution on SOC and nutrients between the linear and complex slopes.After the simulated tillage,notable changes in 137 Cs inventories of the soil occurred in the summit and toeslope positions on the linear slope,while there were significant changes in 137 Cs inventories at convex and concave positions on the complex slope.Soil profile disappeared at the summit slope boundary,with the exposure area of 16.0% and 7.6% of the experimental plot,respectively,for the linear and complex slopes due to no soil replacement.Soil organic C and nutrients were completely depleted with the disappearance of soil profiles at soil eroding zones,whereas a remarkable increase in SOC,total N and available nutrient concentrations of the post-tillage surface soil and a decrease in total nutrient concentrations(P and K) were found at depositional zones on the linear slope.For the complex slope,however,changes in SOC and nutrient concentrations of the post-tillage surface soil exhibited a patterndifferent from that on the linear slope,which showed a remarkable decrease in SOC and total nutrient concentrations but a slight increase in available nutrient concentrations after tillage in the toeslope position.Due to the gradual increase in soil depth from top to bottom of the slope,SOC and nutrient inventories in the soil profiles were significantly correlated with soil redistribution rates on both the linear and complex slopes.Tillage causes remarkable changes of soil chemical properties in the surface soil layer and soil profile,and increases SOC and nutrient inventories for the soil profile downslope in steeply sloping landscapes.