In this paper,the solid waste desulfurization gypsum produced by coal-fired power plants was used as a raw material to prepare calcium sulfate whiskers with high application prospects.Calcium sulfate whiskers with uni...In this paper,the solid waste desulfurization gypsum produced by coal-fired power plants was used as a raw material to prepare calcium sulfate whiskers with high application prospects.Calcium sulfate whiskers with uniform morphology and high aspect ratio can be prepared by hydrothermal method in sulfuric acid solution.A new process of desulfurization gypsum activated by high-energy grinding to reduce the reaction temperature and sulfuric acid concentration was developed.Through the comparison of product morphology,the best grinding time was determined to be 3.5 h.The mechanism of desulfurization gypsum through physical–chemical coupling to reduce energy consumption was clarified.The activation of desulfurization gypsum by grinding and the acidic environment provided by the sulfuric acid solution made the calcium sulfate solution reached rapid saturation and accelerated the nucleation rate.By calculating the conversion and crystallization rate of calcium sulfate whiskers,it was found that there were obvious"autocatalytic"kinetic characteristics during the crystallization process.展开更多
The filler-bitumen interaction mechanism is one of the most essential phases for comprehending the asphalt mixture's performance.However,despite numerous studies,in-depth knowledge of filler-bitumen reciprocity at...The filler-bitumen interaction mechanism is one of the most essential phases for comprehending the asphalt mixture's performance.However,despite numerous studies,in-depth knowledge of filler-bitumen reciprocity at a microscale level is yet to be ascertained.The goal of this research is to gain a better understanding of the fillerbitumen microscale interaction in terms of the synergy and coaction between the physicochemical and rheological performance of mastics due to filler inclusions.The rheological properties of two sustainable mastics,dolomite powder(DP)and lime kiln dust(LKD),together with a neat PEN 60/70 binder,were analysed based on a temperature sweep at elevated temperature conditions.Meanwhile,frequency sweep and multiple stress creep recovery(MSCR)tests were also conducted at pavement serviceability temperature using the dynamic shear rheometer(DSR).Physicochemical tests using a scanning electron microscope(SEM)and energy dispersive X-rays(EDX)were conducted to analyse the impact of parameters such as particle shape,grain size,texture,and chemical compositions.The DSR test results showcased how the incorporation of fillers in asphalt binder considerably improved the performance of the binder in terms of rutting and fatigue.Likewise,its strain and nonrecoverable compliance parameters were substantially reduced at higher filler and binder concentrations.Physical filler attributes of low rigden voids(R.V),high fineness modulus(FM),and high specific surface area(SSA)led to greater interfacial stiffness and elasticity in LKD mastics compared to DP mastics at different loading frequencies and temperature levels.The SEM/EDX results also indicated that the elemental calcium and carbon composition of each filler component,together with its grain morphology,strongly influenced its rheological performance.展开更多
XPS and chemical trapping experments with H2, NH3, and CH3I as trapping agents were carried out for studying the adsorption of propylene over MoO3 or r-Bi2MoO6. The results show that the fragmentation of carbon chain ...XPS and chemical trapping experments with H2, NH3, and CH3I as trapping agents were carried out for studying the adsorption of propylene over MoO3 or r-Bi2MoO6. The results show that the fragmentation of carbon chain takes place during the adsorption of propylene through breaking C -C double bond and C-C bond on Mo2+ and the adjacent lattice oxygen, leading to formation of the oxygen- or nitrogen-containing by-products of C1 and C2 species. Diffuse-Reflection Fourier Transform Infrared (DRFTIR) Spectroscopy was used to study the surface species formed during the chemisorption and reaction of propylene over y-Bi2MoO6 at a lower temperature. The results that C1, C2 adspecies were detected by DRFTIR at 175℃ are consistent with the results of XPS and chemical trapping experiments, whlle the results at 50℃ Grasselli et al.展开更多
This study was carried out to determine the chemical composition and in situ degradability of agro-industrial by-products found in Eritrea. Three categories of by-products were evaluated and were the milling industry ...This study was carried out to determine the chemical composition and in situ degradability of agro-industrial by-products found in Eritrea. Three categories of by-products were evaluated and were the milling industry (wheat bran;WB, short;WS, and middling;WM), brewery (brewers’ dry grain;BDG, hops;BDH, and yeast;BDY) and sesame cakes (sesame cake machine extracted;SCM and manually extracted;SCT). The dry matter (DM) varied between 88.46% in BDY to 92.39% in SCT. The lowest (P < 0.05) crude protein (CP) content was recorded in WM at 10.11% while the highest was from the BDY at 48.20%. The metabolisable energy (ME) value of the agro-industrial by-products ranged from 8.72 to 11.18 MJ per kg DM with the BDH recording the lowest value (P The sesame cakes (SCM and SCT) recorded higher values of 11.17 and 11.18 MJ per kg DM respectively. The SCT recorded the highest ash content at 10.93% followed by BDY at 10.16% with the least being obtained from WM at 2.48%. The ether extract and acid detergent lignin contents were generally low in all cases for all the by-products. Generally, the results indicated that there was no clear pattern in terms of nutrients content amongst the by-products. The in situ DM, organic matter (OM) and CP degradability differed amongst and within the sesame cakes, milling and brewery by-products. The wide variation in chemical composition, DM, OM, CP degradability, and ME obtained from this study offer farmers huge flexibility in formulating rations according to the productive performance of target animals.展开更多
The aim of this study was to develop and examine the morphology and distribution of mercury (Hg) in flue gas desulfurization (FGD) by-product.</span></span><span><span><span style="font...The aim of this study was to develop and examine the morphology and distribution of mercury (Hg) in flue gas desulfurization (FGD) by-product.</span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Mercury in the coal of coal-fired power plants is concentrated in the by-products of desulfurization process, and it is widely used as an additive in cement, building materials and other industries. Due to the different stability of various forms of mercury in the environment, subsequent use of products containing desulfurization by-product additives will continue to be released into the environment, endangering human health. Therefore, it is very necessary to study the form and distribution of mercury in the by-products of desulfurization in coal-fired power plants to provide a theoretical basis for subsequent harmless treatment.</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">For content and morphology of mercury analysis, 1 sample of dry FGD ash and 6 samples of wet FGD gypsum were analyzed. The total 7 samples were extracted using a modification of sequential chemical extractions (SCE) method, which was employed for the partitioning Hg into four fractions: water soluble, acid soluble, H<sub>2</sub>O<sub>2</sub> soluble, and residual. The Hg analysis was done with United States Environmental Protection Agency (USEPA) method</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">7471B. Comparing with the wet FGD gypsums of coal-fired boilers, the total Hg content in the dry FGD by-product was as high as</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">1.22 mg/kg, while the total Hg content in the FGD gypsum is 0.23</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">0.74 mg/kg, which was 2 times over the wet FGD gypsum. The concentration of water soluble Hg in the dry FGD by-product was the highest amount (0.72 mg/kg), accounting for 59.02% of the total mercury. While residual Hg content was 0.16 mg/kg, only about 13.11% of the total mercury. Mercury content in FGD gypsum was expressed in the form of <i></span><i><span style="font-family:Verdana;">ρ</span></i><span style="font-family:Verdana;"></i></span></span></span></span><span><span><i><span style="font-family:""> </span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(residual Hg) ></span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"><i></span><i><span style="font-family:Verdana;">ρ</span></i><span style="font-family:Verdana;"></i></span></span></span></span><span><span><i><span style="font-family:""> </span></i></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">(H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> soluble Hg)</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">></span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"><i></span><i><span style="font-family:Verdana;">ρ</span></i><span style="font-family:Verdana;"></i></span></span></span></span><span><span><i><span style="font-family:""> </span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(water soluble Hg)</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">></span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"><i></span><i><span style="font-family:Verdana;">ρ</span></i><span style="font-family:Verdana;"></i></span></span></span></span><span><span><i><span style="font-family:""> </span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(acid soluble Hg). The morphology and distribution of mercury in FGD by-products is supposed to be analyzed before utilization, and the impact of mercury on the environment should be considered.展开更多
A considerable amount of Hg is retained in flue gas desulfurization(FGD) gypsum from Wet Flue Gas Desulfurization(WFGD) systems. For this reason, it is important to determine the species of Hg in FGD gypsum not on...A considerable amount of Hg is retained in flue gas desulfurization(FGD) gypsum from Wet Flue Gas Desulfurization(WFGD) systems. For this reason, it is important to determine the species of Hg in FGD gypsum not only to understand the mechanism of Hg removal by WFGD systems but also to determine the final fate of Hg when FGD gypsum is disposed. In this study, Temperature Programmed Decomposition(TPD) and Sequential Chemical Extraction(SCE) were applied to FGD gypsum to identify the Hg species in it. The FGD gypsum samples were collected from seven coal-fired power plants in China, with Hg concentrations ranging from 0.19 to 3.27 μg/g. A series of pure Hg compounds were used as reference materials in TPD experiments and the results revealed that the decomposition temperatures of different Hg compounds increase in the order of Hg_2Cl_2〈 HgCl_2〈 black HgS 〈 Hg_2SO_4〈 red HgS 〈 HgO 〈 HgSO_4. The Hg compounds existing in FGD gypsums identified by TPD included HgCl_2, Hg_2Cl_2, Hg_2SO_4, black HgS and red HgS, of which mercury sulfides were the primary compounds. The results of SCE indicated that Hg was mainly distributed in the strongly complexed phase. The low Hg content in FGD gypsum increases the ambiguity of assigning extraction fractions to certain Hg species by SCE. The fact that the primary compounds in FGD gypsum are HgS phases leads the leaching of Hg in the natural environment to be quite low, but a considerable amount of Hg may be released during the industrial heating process.展开更多
基金supported by the State Key Laboratory of Mineral Processing Science and Technology Open Fund(BGRIMM-KJSKL-2017-16)Liaoning Provincial Department of Education Youth Project(LJ2017QL028)Coal Resource Safety Mining and Clean Utilization Engineering Research Center Open Fund(LNTU15KF18)。
文摘In this paper,the solid waste desulfurization gypsum produced by coal-fired power plants was used as a raw material to prepare calcium sulfate whiskers with high application prospects.Calcium sulfate whiskers with uniform morphology and high aspect ratio can be prepared by hydrothermal method in sulfuric acid solution.A new process of desulfurization gypsum activated by high-energy grinding to reduce the reaction temperature and sulfuric acid concentration was developed.Through the comparison of product morphology,the best grinding time was determined to be 3.5 h.The mechanism of desulfurization gypsum through physical–chemical coupling to reduce energy consumption was clarified.The activation of desulfurization gypsum by grinding and the acidic environment provided by the sulfuric acid solution made the calcium sulfate solution reached rapid saturation and accelerated the nucleation rate.By calculating the conversion and crystallization rate of calcium sulfate whiskers,it was found that there were obvious"autocatalytic"kinetic characteristics during the crystallization process.
文摘The filler-bitumen interaction mechanism is one of the most essential phases for comprehending the asphalt mixture's performance.However,despite numerous studies,in-depth knowledge of filler-bitumen reciprocity at a microscale level is yet to be ascertained.The goal of this research is to gain a better understanding of the fillerbitumen microscale interaction in terms of the synergy and coaction between the physicochemical and rheological performance of mastics due to filler inclusions.The rheological properties of two sustainable mastics,dolomite powder(DP)and lime kiln dust(LKD),together with a neat PEN 60/70 binder,were analysed based on a temperature sweep at elevated temperature conditions.Meanwhile,frequency sweep and multiple stress creep recovery(MSCR)tests were also conducted at pavement serviceability temperature using the dynamic shear rheometer(DSR).Physicochemical tests using a scanning electron microscope(SEM)and energy dispersive X-rays(EDX)were conducted to analyse the impact of parameters such as particle shape,grain size,texture,and chemical compositions.The DSR test results showcased how the incorporation of fillers in asphalt binder considerably improved the performance of the binder in terms of rutting and fatigue.Likewise,its strain and nonrecoverable compliance parameters were substantially reduced at higher filler and binder concentrations.Physical filler attributes of low rigden voids(R.V),high fineness modulus(FM),and high specific surface area(SSA)led to greater interfacial stiffness and elasticity in LKD mastics compared to DP mastics at different loading frequencies and temperature levels.The SEM/EDX results also indicated that the elemental calcium and carbon composition of each filler component,together with its grain morphology,strongly influenced its rheological performance.
基金Supported by the National Natural Science Fundation of China.
文摘XPS and chemical trapping experments with H2, NH3, and CH3I as trapping agents were carried out for studying the adsorption of propylene over MoO3 or r-Bi2MoO6. The results show that the fragmentation of carbon chain takes place during the adsorption of propylene through breaking C -C double bond and C-C bond on Mo2+ and the adjacent lattice oxygen, leading to formation of the oxygen- or nitrogen-containing by-products of C1 and C2 species. Diffuse-Reflection Fourier Transform Infrared (DRFTIR) Spectroscopy was used to study the surface species formed during the chemisorption and reaction of propylene over y-Bi2MoO6 at a lower temperature. The results that C1, C2 adspecies were detected by DRFTIR at 175℃ are consistent with the results of XPS and chemical trapping experiments, whlle the results at 50℃ Grasselli et al.
文摘This study was carried out to determine the chemical composition and in situ degradability of agro-industrial by-products found in Eritrea. Three categories of by-products were evaluated and were the milling industry (wheat bran;WB, short;WS, and middling;WM), brewery (brewers’ dry grain;BDG, hops;BDH, and yeast;BDY) and sesame cakes (sesame cake machine extracted;SCM and manually extracted;SCT). The dry matter (DM) varied between 88.46% in BDY to 92.39% in SCT. The lowest (P < 0.05) crude protein (CP) content was recorded in WM at 10.11% while the highest was from the BDY at 48.20%. The metabolisable energy (ME) value of the agro-industrial by-products ranged from 8.72 to 11.18 MJ per kg DM with the BDH recording the lowest value (P The sesame cakes (SCM and SCT) recorded higher values of 11.17 and 11.18 MJ per kg DM respectively. The SCT recorded the highest ash content at 10.93% followed by BDY at 10.16% with the least being obtained from WM at 2.48%. The ether extract and acid detergent lignin contents were generally low in all cases for all the by-products. Generally, the results indicated that there was no clear pattern in terms of nutrients content amongst the by-products. The in situ DM, organic matter (OM) and CP degradability differed amongst and within the sesame cakes, milling and brewery by-products. The wide variation in chemical composition, DM, OM, CP degradability, and ME obtained from this study offer farmers huge flexibility in formulating rations according to the productive performance of target animals.
文摘The aim of this study was to develop and examine the morphology and distribution of mercury (Hg) in flue gas desulfurization (FGD) by-product.</span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Mercury in the coal of coal-fired power plants is concentrated in the by-products of desulfurization process, and it is widely used as an additive in cement, building materials and other industries. Due to the different stability of various forms of mercury in the environment, subsequent use of products containing desulfurization by-product additives will continue to be released into the environment, endangering human health. Therefore, it is very necessary to study the form and distribution of mercury in the by-products of desulfurization in coal-fired power plants to provide a theoretical basis for subsequent harmless treatment.</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">For content and morphology of mercury analysis, 1 sample of dry FGD ash and 6 samples of wet FGD gypsum were analyzed. The total 7 samples were extracted using a modification of sequential chemical extractions (SCE) method, which was employed for the partitioning Hg into four fractions: water soluble, acid soluble, H<sub>2</sub>O<sub>2</sub> soluble, and residual. The Hg analysis was done with United States Environmental Protection Agency (USEPA) method</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">7471B. Comparing with the wet FGD gypsums of coal-fired boilers, the total Hg content in the dry FGD by-product was as high as</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">1.22 mg/kg, while the total Hg content in the FGD gypsum is 0.23</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">0.74 mg/kg, which was 2 times over the wet FGD gypsum. The concentration of water soluble Hg in the dry FGD by-product was the highest amount (0.72 mg/kg), accounting for 59.02% of the total mercury. While residual Hg content was 0.16 mg/kg, only about 13.11% of the total mercury. Mercury content in FGD gypsum was expressed in the form of <i></span><i><span style="font-family:Verdana;">ρ</span></i><span style="font-family:Verdana;"></i></span></span></span></span><span><span><i><span style="font-family:""> </span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(residual Hg) ></span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"><i></span><i><span style="font-family:Verdana;">ρ</span></i><span style="font-family:Verdana;"></i></span></span></span></span><span><span><i><span style="font-family:""> </span></i></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">(H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> soluble Hg)</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">></span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"><i></span><i><span style="font-family:Verdana;">ρ</span></i><span style="font-family:Verdana;"></i></span></span></span></span><span><span><i><span style="font-family:""> </span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(water soluble Hg)</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">></span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"><i></span><i><span style="font-family:Verdana;">ρ</span></i><span style="font-family:Verdana;"></i></span></span></span></span><span><span><i><span style="font-family:""> </span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(acid soluble Hg). The morphology and distribution of mercury in FGD by-products is supposed to be analyzed before utilization, and the impact of mercury on the environment should be considered.
基金supported by the National Natural Science Foundation of China (No. 51376109)
文摘A considerable amount of Hg is retained in flue gas desulfurization(FGD) gypsum from Wet Flue Gas Desulfurization(WFGD) systems. For this reason, it is important to determine the species of Hg in FGD gypsum not only to understand the mechanism of Hg removal by WFGD systems but also to determine the final fate of Hg when FGD gypsum is disposed. In this study, Temperature Programmed Decomposition(TPD) and Sequential Chemical Extraction(SCE) were applied to FGD gypsum to identify the Hg species in it. The FGD gypsum samples were collected from seven coal-fired power plants in China, with Hg concentrations ranging from 0.19 to 3.27 μg/g. A series of pure Hg compounds were used as reference materials in TPD experiments and the results revealed that the decomposition temperatures of different Hg compounds increase in the order of Hg_2Cl_2〈 HgCl_2〈 black HgS 〈 Hg_2SO_4〈 red HgS 〈 HgO 〈 HgSO_4. The Hg compounds existing in FGD gypsums identified by TPD included HgCl_2, Hg_2Cl_2, Hg_2SO_4, black HgS and red HgS, of which mercury sulfides were the primary compounds. The results of SCE indicated that Hg was mainly distributed in the strongly complexed phase. The low Hg content in FGD gypsum increases the ambiguity of assigning extraction fractions to certain Hg species by SCE. The fact that the primary compounds in FGD gypsum are HgS phases leads the leaching of Hg in the natural environment to be quite low, but a considerable amount of Hg may be released during the industrial heating process.