In a gathering,some so-called successful businessmen are talking happily.Among them is a famous chemical fiber manufacturer Chen Jianhua.Chen recalled his past in his memoir "My Endeavor"-"I was born in...In a gathering,some so-called successful businessmen are talking happily.Among them is a famous chemical fiber manufacturer Chen Jianhua.Chen recalled his past in his memoir "My Endeavor"-"I was born in a remote town Shengze in 1971, suffering an impoverished life when I was very young.My family is hard to afford tuition fee when I was a pupil,…."But a hero is known in the time of misfortune,Chen owns a total asset of 13 billion Yuan at this moment with his unremitting efforts year by year,mastering a kingdom of chemical fiber-Hengli Group..As an old saying goes "Suffering is wealth",the early experience steeled Chen,endowing the wealth and fortitude to him. After skimming over Chen's memoir,I continued a further face to face interview with him in order to understand his course of struggle more deeply.All the success have their own highlights in their characters,therefore,we cannot make an exception of Chen's case.展开更多
Chemical looping dry reforming(CLDR) is an innovative technology for CO2 utilization using the chemical looping principle.The CLDR process consists of three stages,i.e.CH4 reduction,CO2 reforming,and air oxidation.S...Chemical looping dry reforming(CLDR) is an innovative technology for CO2 utilization using the chemical looping principle.The CLDR process consists of three stages,i.e.CH4 reduction,CO2 reforming,and air oxidation.Spinel nickel ferrite(NiFe2O4) was prepared and its multi-cycle performance as an oxygen carrier for CLDR was experimentally investigated.X-ray diffraction(XRD) and Laser Raman spectroscopy showed that a pure spinel crystalline phase(NiFe2O4) was obtained by a parallel flow co-precipitating method.NiFe2O4was reduced into Fe-Ni alloy and wustite(FexO) during the CH4 reduction process.Subsequent oxidation of the reduced oxygen carrier was performed with CO2 as an oxidant to form an intermediate state:a mixture of spinel Ni(1-x)Fe(2+x)O4,Fe(2+y)O4 and metallic Ni.And CO was generated in parallel during this stage.Approximate 185 mL of CO was generated for 1 g spinel NiFe2O4 in a single cycle.The intermediate oxygen carrier was fully oxidized in the air oxidation stage to form a mixture of Ni(1+x)Fe(2-x)O4 and Fe2O3.Although the original state of oxygen carrier(NiFe2O4) was not fully regenerated and agglomeration was observed,a good recyclability was shown in 10 successive redox cycles.展开更多
Dioxin production is a worldwide concern because of its persistence and carcinogenic,teratogenic, and mutagenic effects. The pyrolysis-chemical looping combustion process of disposing solid waste is an alternative to ...Dioxin production is a worldwide concern because of its persistence and carcinogenic,teratogenic, and mutagenic effects. The pyrolysis-chemical looping combustion process of disposing solid waste is an alternative to traditional solid waste incineration developed to reduce the dioxin production. Based on the equilibrium composition of the Deacon reaction,pyrolysis gas oxidized by seven common oxygen carriers, namely, Cu O, Ni O, Ca SO4, Co O,Fe2O3, Mn3O4, and Fe Ti O3, is studied and compared with the pyrolysis gas directly combusted by air. The result shows that the activity of the Deacon reaction for oxygen carriers is lower than that for air. For four typical oxygen carriers(Cu O, Ni O, Fe2O3, and Fe Ti O3), the influences of temperature, pressure, gas composition, and tar on the Deacon reaction are discussed in detail. According to these simulation results, the dioxin production in China, Europe, the United States, and Japan is predicted for solid waste disposal by the pyrolysis-chemical looping combustion process. Thermodynamic analysis results in this paper show that chemical looping combustion can reduce dioxin production in the disposal of solid waste.展开更多
A high-performance PMOSFET based on silicon material of hybrid orientation is obtained.Hybrid orientation wafers,integrated by(100) and(110) crystal orientation,are fabricated using silicon-silicon bonding, chemic...A high-performance PMOSFET based on silicon material of hybrid orientation is obtained.Hybrid orientation wafers,integrated by(100) and(110) crystal orientation,are fabricated using silicon-silicon bonding, chemical mechanical polishing,etching silicon and non-selective expitaxy.A PMOSFET with W/L = 50μm/8μm is also processed,and the measured results show that the drain-source current and peak mobility of the PMOSFET are enhanced by up to 50.7%and 150%at V_(gs) =-15 V and V_(ds) =-0.5 V,respectively.The mobility values are higher than that reported in the literature.展开更多
文摘In a gathering,some so-called successful businessmen are talking happily.Among them is a famous chemical fiber manufacturer Chen Jianhua.Chen recalled his past in his memoir "My Endeavor"-"I was born in a remote town Shengze in 1971, suffering an impoverished life when I was very young.My family is hard to afford tuition fee when I was a pupil,…."But a hero is known in the time of misfortune,Chen owns a total asset of 13 billion Yuan at this moment with his unremitting efforts year by year,mastering a kingdom of chemical fiber-Hengli Group..As an old saying goes "Suffering is wealth",the early experience steeled Chen,endowing the wealth and fortitude to him. After skimming over Chen's memoir,I continued a further face to face interview with him in order to understand his course of struggle more deeply.All the success have their own highlights in their characters,therefore,we cannot make an exception of Chen's case.
基金the financial support by the National Natural Science Foundation of China(51406214 and51406208)supported by the Natural science Foundation of Guangdong Province(2015A030313719)the Science&Technology Research Project of Guangdong Province(2013B050800008)
文摘Chemical looping dry reforming(CLDR) is an innovative technology for CO2 utilization using the chemical looping principle.The CLDR process consists of three stages,i.e.CH4 reduction,CO2 reforming,and air oxidation.Spinel nickel ferrite(NiFe2O4) was prepared and its multi-cycle performance as an oxygen carrier for CLDR was experimentally investigated.X-ray diffraction(XRD) and Laser Raman spectroscopy showed that a pure spinel crystalline phase(NiFe2O4) was obtained by a parallel flow co-precipitating method.NiFe2O4was reduced into Fe-Ni alloy and wustite(FexO) during the CH4 reduction process.Subsequent oxidation of the reduced oxygen carrier was performed with CO2 as an oxidant to form an intermediate state:a mixture of spinel Ni(1-x)Fe(2+x)O4,Fe(2+y)O4 and metallic Ni.And CO was generated in parallel during this stage.Approximate 185 mL of CO was generated for 1 g spinel NiFe2O4 in a single cycle.The intermediate oxygen carrier was fully oxidized in the air oxidation stage to form a mixture of Ni(1+x)Fe(2-x)O4 and Fe2O3.Although the original state of oxygen carrier(NiFe2O4) was not fully regenerated and agglomeration was observed,a good recyclability was shown in 10 successive redox cycles.
基金supported by the National Basic Research Program of China (973 Program) (No. 2011CB201502)the National Key Technology R&D Program of China (No. 2010BAC66B03)
文摘Dioxin production is a worldwide concern because of its persistence and carcinogenic,teratogenic, and mutagenic effects. The pyrolysis-chemical looping combustion process of disposing solid waste is an alternative to traditional solid waste incineration developed to reduce the dioxin production. Based on the equilibrium composition of the Deacon reaction,pyrolysis gas oxidized by seven common oxygen carriers, namely, Cu O, Ni O, Ca SO4, Co O,Fe2O3, Mn3O4, and Fe Ti O3, is studied and compared with the pyrolysis gas directly combusted by air. The result shows that the activity of the Deacon reaction for oxygen carriers is lower than that for air. For four typical oxygen carriers(Cu O, Ni O, Fe2O3, and Fe Ti O3), the influences of temperature, pressure, gas composition, and tar on the Deacon reaction are discussed in detail. According to these simulation results, the dioxin production in China, Europe, the United States, and Japan is predicted for solid waste disposal by the pyrolysis-chemical looping combustion process. Thermodynamic analysis results in this paper show that chemical looping combustion can reduce dioxin production in the disposal of solid waste.
基金supported by the National Basic Research Program of China(No.61398)
文摘A high-performance PMOSFET based on silicon material of hybrid orientation is obtained.Hybrid orientation wafers,integrated by(100) and(110) crystal orientation,are fabricated using silicon-silicon bonding, chemical mechanical polishing,etching silicon and non-selective expitaxy.A PMOSFET with W/L = 50μm/8μm is also processed,and the measured results show that the drain-source current and peak mobility of the PMOSFET are enhanced by up to 50.7%and 150%at V_(gs) =-15 V and V_(ds) =-0.5 V,respectively.The mobility values are higher than that reported in the literature.