[Objective] The research aimed to study the application of chemical tracing experiment technique in leakage detection of hydraulic engineering.[Method] According to the current situation of Sanyuan Western Suburb Rese...[Objective] The research aimed to study the application of chemical tracing experiment technique in leakage detection of hydraulic engineering.[Method] According to the current situation of Sanyuan Western Suburb Reservoir in Xianyang City of Shaanxi Province,three sections (L1,L2 and L3) were set.KI was selected as the chemical tracer to carry out the tracing and detection research.[Result] There was no obvious leakage phenomenon in L1,L2 and L3 sections.The impermeability of rock in some dam abutments was bad.[Conclusion] The leakage reason of Western Suburb Reservoir was that the impermeability of rock in some dam abutments couldn’t satisfy seepage requirement.After the reservoir was put into operation,the water level in front of dam rose,and the ground water level of dam abutment also rose.The penetration water pressure correspondingly increased,and the water content of bank slope at the downstream of dam increased.展开更多
Research into the fundamental properties of microcapsules and use of the results to develop a wide variety of products in industries such as printing, fast-moving consumer goods, construction, pharmaceuticals, and agr...Research into the fundamental properties of microcapsules and use of the results to develop a wide variety of products in industries such as printing, fast-moving consumer goods, construction, pharmaceuticals, and agrochemicals is a dynamic and ever-progressing field of study. For microcapsules to be effective in providing protection from harsh environments or delivering large payloads, it is essential to have a good understanding of their properties to enable quality control during formulation, storage, and applications. This review aims to outline the commonly used techniques for determining the physicochemical, struc- tural, and mechanical properties of microcapsules, and highlights the interlinked nature of these three areas with respect to the end-use industrial application. This review provides information on techniques that are well supported in the literature, and also examines microcapsule analytical techniques that will become more prevalent as a result of new technological developments or extensions from other areas of study.展开更多
文摘[Objective] The research aimed to study the application of chemical tracing experiment technique in leakage detection of hydraulic engineering.[Method] According to the current situation of Sanyuan Western Suburb Reservoir in Xianyang City of Shaanxi Province,three sections (L1,L2 and L3) were set.KI was selected as the chemical tracer to carry out the tracing and detection research.[Result] There was no obvious leakage phenomenon in L1,L2 and L3 sections.The impermeability of rock in some dam abutments was bad.[Conclusion] The leakage reason of Western Suburb Reservoir was that the impermeability of rock in some dam abutments couldn’t satisfy seepage requirement.After the reservoir was put into operation,the water level in front of dam rose,and the ground water level of dam abutment also rose.The penetration water pressure correspondingly increased,and the water content of bank slope at the downstream of dam increased.
文摘Research into the fundamental properties of microcapsules and use of the results to develop a wide variety of products in industries such as printing, fast-moving consumer goods, construction, pharmaceuticals, and agrochemicals is a dynamic and ever-progressing field of study. For microcapsules to be effective in providing protection from harsh environments or delivering large payloads, it is essential to have a good understanding of their properties to enable quality control during formulation, storage, and applications. This review aims to outline the commonly used techniques for determining the physicochemical, struc- tural, and mechanical properties of microcapsules, and highlights the interlinked nature of these three areas with respect to the end-use industrial application. This review provides information on techniques that are well supported in the literature, and also examines microcapsule analytical techniques that will become more prevalent as a result of new technological developments or extensions from other areas of study.