期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Change in Continuous Detonation Wave Propagation Mode from Rotating Detonation to Standing Detonation 被引量:20
1
作者 邵业涛 王健平 《Chinese Physics Letters》 SCIE CAS CSCD 2010年第3期216-219,共4页
We perform a three-dimensional numerical simulation based on a one-step chemical reaction model to investigate changes in the mode of H2-Air detonation wave propagation from rotating detonation wave (RDW) mode to st... We perform a three-dimensional numerical simulation based on a one-step chemical reaction model to investigate changes in the mode of H2-Air detonation wave propagation from rotating detonation wave (RDW) mode to standing detonation wave mode. The physical characteristics of an RDW with injection velocity of 500 m/s are analyzed to investigate the physical mechanisms involved. We find that with increasing injection velocity, the detonation wave gradually changes from perpendicular to the head wall to parallel to the head wall. When the injection velocity exceeds the Chapman-Jouguet velocity VCJ (about 1984 m/s), the detonation wave changes orientation to become perpendicular to the fuel injection direction, and the rotating mode changes accordingly to a standing mode. Finally, the plane detonation characteristic triple-wave structures can be found from the standing mode. 展开更多
关键词 fluid dynamics chemical physics and physical chemistry
下载PDF
Modeling and simulation of chemically reacting flows in gas-solid catalytic and non-catalytic processes 被引量:5
2
作者 Changning Wu Binhang Yan Yong Jin Yi Cheng 《Particuology》 SCIE EI CAS CSCD 2010年第6期525-530,共6页
This paper gives an overview of the recent development of modeling and simulation of chemically react- ing flows in gas-solid catalytic and non-catalytic processes. General methodology has been focused on the Eulerian... This paper gives an overview of the recent development of modeling and simulation of chemically react- ing flows in gas-solid catalytic and non-catalytic processes. General methodology has been focused on the Eulerian-Lagrangian description of particulate flows, where the particles behave as the catalysts or the reactant materials. For the strong interaction between the transport phenomena (i.e., momentum, heat and mass transfer) and the chemical reactions at the particle scale, a cross-scale modeling approach, i.e., CFD-DEM or CFD-DPM, is established for describing a wide variety of complex reacting flows in multiphase reactors, Representative processes, including fluid catalytic cracking (FCC), catalytic conversion of syngas to methane, and coal pyrolysis to acetylene in thermal plasma, are chosen as case studies to demonstrate the unique advantages of the theoretical scheme based on the integrated particle-scale information with clear physical meanings, This type of modeling approach provides a solid basis for understanding the multiphase reacting flow problems in general. 展开更多
关键词 Gas-solid chemically reacting flow Cross-scale modeling and simulation Eulerian-Lagrangian scheme Computational fluid dynamics (CFD) Discrete element method (DEM) Discrete phase model (DPM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部