期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effect of chemical treatment of silicon gel on tissue compatibility 被引量:1
1
作者 吴欣怡 阎颖 杜立群 《Chinese Medical Journal》 SCIE CAS CSCD 2004年第8期1200-1203,共4页
Background Silicon gel is unfavourable for cell attachment and growth. This study was to study if pretreating the surface of silicon gel with chemical agents affects the proliferation of epithelial cells Methods Si... Background Silicon gel is unfavourable for cell attachment and growth. This study was to study if pretreating the surface of silicon gel with chemical agents affects the proliferation of epithelial cells Methods Silicon gel was made and treated with either mixed acid solution (containing 232 g/dm 3 of H 2SO 4 and 8 g/dm 3 of K 2Cr 2O 7) or 300 cm 3/dm 3 peroxide for 5, 10, and 15 minutes or 10, 15, and 20 minutes, respectively The cultured corneal epithelial cells were seeded onto those silicon gels and kept for 13 days Immunohistochemical investigations were then carried out for integrin (alpha 6 or beta 4) and actin KH*2/5DResults Growth of the epithelial cells in silicon gels treated with mixed acid solution for 10 minutes and 15 minutes was much significant than that in the untreated gels After a 12-hour culture, a small number of corneal epithelial cells were proliferated on the surface of the silicon gels that had been treated with peroxide for 15 minutes After a 3-day culture, those cells were further proliferated and fused together The corneal epithelial cells did not grow well in the silicon gels treated with peroxide for 10 or 20 minutes Immunostaining revealed the expression of actin and integrin alpha 6 or beta 4 on the silicon gels that were treated with mixed acid solution for 10 minutes or peroxide for 15 minutes Conclusion Silicon gels treated either with mixed acid solution for 10 or 15 minutes or with peroxide for 15 minutes improves cell proliferation 展开更多
关键词 artificial cornea · silicon gel · chemical treatment
原文传递
Effect of a high strength chemical industry wastewater on microbial community dynamics and mesophilic methane generation
2
作者 Harish Venkatakrishnan Youming Tan +6 位作者 Maszenan bin Abdul Majid Santosh Pathak Antonius Yudi Sendjaja Dongzhe Li Jerry Jian Lin Liu Yan Zhou Wun Jern Ng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第4期875-884,共10页
A high strength chemical industry wastewater was assessed for its impact on anaerobic microbial com- munity dynamics and consequently mesophilic methane generation. Cumulative methane production was 251 mL/g total che... A high strength chemical industry wastewater was assessed for its impact on anaerobic microbial com- munity dynamics and consequently mesophilic methane generation. Cumulative methane production was 251 mL/g total chemical oxygen demand removed at standard temperature and pressure at the end of 30 days experimental period with a highest recorded methane percentage of 80.6% of total biogas volume. Volatile fatty acids (VFAs) analysis revealed that acetic acid was the major intermediate VFAs produced with propionic acid accumulating over the experimental period. Quantitative analysis of microbial communities in the test and control groups with quantitative real time polymerase chain reaction highlighted that in the test group, Eubacteria (96.3%) was dominant in comparison with methanogens (3.7%). The latter were dominated by Methanomicrobiales and Methanobacteriales while in test groups increased over the experimental period, reaching a maximum on day 30. Denaturing gradient gel electrophoresis profile was performed, targeting the 16S rRNA gene of Eubacteria and Archaea, with the DNA samples extracted at 3 different time points from the test groups. A phylogenetic tree was constructed for the sequences using the neighborhood joining method. The analysis revealed that the presence of organisms resembling Syntrophomonadaceae could have contributed to increased production of acetic and propionic acid intermediates while decrease of organisms resembling Pelotomaculum sp. could have most likely contributed to accumulation of propionic acid. This study suggested that the degradation of organic components within the high strength industrial wastewater is closely linked with the activity of certain niche microbial communities within eubacteria and methanogens. 展开更多
关键词 biochemical methane potential biogas community dynamics denaturing gradient gel electrophoresis industrial chemical wastewater quantitative real-time PCR
原文传递
Solid State Polymer Electrolytes for Dye-sensitized Solar Cell
3
作者 Xiong Yin1,2, Wanchun Xiang1,2, Xurui Xiao1, Yuan Lin1, Shibi Fang1(1.Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China 2.Graduate School of Chinese Academy of Sciences, Beijing 100039, China) 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2007年第5期660-661,共2页
1 Introduction Over the past decade,Dye-sensitized solar cells (DSSCs) have been intensively investigated as potential alternatives to conventional inorganic photovoltaic devices due to their low production cost and h... 1 Introduction Over the past decade,Dye-sensitized solar cells (DSSCs) have been intensively investigated as potential alternatives to conventional inorganic photovoltaic devices due to their low production cost and high energy conversion[1-4]. This type of solar cell has achieved an impressive energy conversion efficiency of over 10%,whose electrolyte is a voltaic organic liquid solvent containing iodide/triiodide as redox couple.However,the use of a liquid electrolyte brings difficulties in the practi... 展开更多
关键词 dye-sensitized solar cell chemically cross-linked gel polymer electrolyte quaternization reaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部