Two-dimensional(2D)transition-metal dichalcogenide materials(TMDs)alloys have a wide range of applications in the field of optoelectronics due to their capacity to achieve wide modulation of the band gap with fully tu...Two-dimensional(2D)transition-metal dichalcogenide materials(TMDs)alloys have a wide range of applications in the field of optoelectronics due to their capacity to achieve wide modulation of the band gap with fully tunable compositions.However,it is still a challenge for growing alloys with uniform components and large lateral size due to the random distribution of the crystal nucleus locations.Here,we applied a simple but effective promoter assisted liquid phase chemical vapor deposition(CVD)method,in which the quantity ratio of promoter to metal precursor can be controlled precisely,leading to tiny amounts of transition metal oxide precursors deposition onto the substrates in a highly uniform and reproducible manner,which can effectively control the uniform distribution of element components and nucleation sites.By this method,a series of monolayer Nb_(1−x)W_(x)Se_(2)alloy films with fully tunable compositions and centimeter scale have been successfully synthesized on sapphire substrates.This controllable approach opens a new way to produce large area and uniform 2D alloy film,which has the potential for the construction of optoelectronic devices with tailored spectral responses.展开更多
Thin aluminum oxide films were deposited by a new and simple physicochemical method called chemical liquid phase deposition (CLD) on semiconductor materials. Aluminum sulfate with crystallized water and sodium bicarbo...Thin aluminum oxide films were deposited by a new and simple physicochemical method called chemical liquid phase deposition (CLD) on semiconductor materials. Aluminum sulfate with crystallized water and sodium bicarbonate were used as precursors for film growth, and the control of the system抯 pH value played an important role in this experiment. The growth rate is 12 nm/h with the deposition at [Al2(SO4)3]=0.0837 molL-1, [NaHCO3]=0.214 molL-1, 15 ℃. Post-growth annealing not only densifies and purifies the films, but results in film crystallization as well. Excellent quality of Al2O3 films in this work is supported by electron dispersion spectroscopy, Fourier transform infrared spectrum, X-ray diffraction spectrum and scanning electron microscopy photograph.展开更多
A heterogeneous chemical model is developed by coupling aerosol, gas-phase and liquid-phase chemical model. SO2 oxidation rates on the aerosol surface are calculated and the influence of some factors is discussed. Mod...A heterogeneous chemical model is developed by coupling aerosol, gas-phase and liquid-phase chemical model. SO2 oxidation rates on the aerosol surface are calculated and the influence of some factors is discussed. Model simulations indicate that SO2 heterogeneous oxidation rates are sensitive to the mass concentration and chemical composition of aerosols, relative humidity, initial values of SO2 and H2O2. The heterogeneous chemical model is coupled with a Eulerian deposition model. Model results show that oxidation of SO2 on the aerosol surface is found to reduce SO2 levels by 5%-33%, to increase SO2-4 concentrations by 8%-50% in the surface layer.展开更多
Geometrical evolution laws are widely used in continuum modeling of surface and interface motion in materials science.In this article,we first give a brief review of various kinds of geometrical evolution laws and the...Geometrical evolution laws are widely used in continuum modeling of surface and interface motion in materials science.In this article,we first give a brief review of various kinds of geometrical evolution laws and their variational derivations,with an emphasis on strong anisotropy.We then survey some of the finite element based numerical methods for simulating the motion of interfaces focusing on the field of thin film growth.We discuss the finite element method applied to front-tracking,phase-field and level-set methods.We describe various applications of these geometrical evolution laws to materials science problems,and in particular,the growth and morphologies of thin crystalline films.展开更多
基金the National Science Foundation of China(Nos.61922005 and U1930105)the Beijing Municipal Natural Science Foundation(No.JQ20027)+2 种基金The National Natural Science Foundation of China(No.62005003)The General Program of Science and Technology Development Project of Beijing Municipal Education Commission(No.KM202110005008)The Basic Research Foundation of Beijing University of Technology(No.048000546320504).
文摘Two-dimensional(2D)transition-metal dichalcogenide materials(TMDs)alloys have a wide range of applications in the field of optoelectronics due to their capacity to achieve wide modulation of the band gap with fully tunable compositions.However,it is still a challenge for growing alloys with uniform components and large lateral size due to the random distribution of the crystal nucleus locations.Here,we applied a simple but effective promoter assisted liquid phase chemical vapor deposition(CVD)method,in which the quantity ratio of promoter to metal precursor can be controlled precisely,leading to tiny amounts of transition metal oxide precursors deposition onto the substrates in a highly uniform and reproducible manner,which can effectively control the uniform distribution of element components and nucleation sites.By this method,a series of monolayer Nb_(1−x)W_(x)Se_(2)alloy films with fully tunable compositions and centimeter scale have been successfully synthesized on sapphire substrates.This controllable approach opens a new way to produce large area and uniform 2D alloy film,which has the potential for the construction of optoelectronic devices with tailored spectral responses.
文摘Thin aluminum oxide films were deposited by a new and simple physicochemical method called chemical liquid phase deposition (CLD) on semiconductor materials. Aluminum sulfate with crystallized water and sodium bicarbonate were used as precursors for film growth, and the control of the system抯 pH value played an important role in this experiment. The growth rate is 12 nm/h with the deposition at [Al2(SO4)3]=0.0837 molL-1, [NaHCO3]=0.214 molL-1, 15 ℃. Post-growth annealing not only densifies and purifies the films, but results in film crystallization as well. Excellent quality of Al2O3 films in this work is supported by electron dispersion spectroscopy, Fourier transform infrared spectrum, X-ray diffraction spectrum and scanning electron microscopy photograph.
基金Project supported by the National "85-912"Key Science and Technology Project
文摘A heterogeneous chemical model is developed by coupling aerosol, gas-phase and liquid-phase chemical model. SO2 oxidation rates on the aerosol surface are calculated and the influence of some factors is discussed. Model simulations indicate that SO2 heterogeneous oxidation rates are sensitive to the mass concentration and chemical composition of aerosols, relative humidity, initial values of SO2 and H2O2. The heterogeneous chemical model is coupled with a Eulerian deposition model. Model results show that oxidation of SO2 on the aerosol surface is found to reduce SO2 levels by 5%-33%, to increase SO2-4 concentrations by 8%-50% in the surface layer.
基金The work of B.Li was supported by the US National Science Foundation(NSF)through grants DMS-0451466 and DMS-0811259the US Department of Energy through grant DE-FG02-05ER25707+2 种基金the Center for Theoretical Biological Physics through the NSF grants PHY-0216576 and PHY-0822283J.Lowengrub gratefully acknowledges support from the US National Science Foundation Divisions of Mathematical Sciences(DMS)and Materials Research(DMR)The work of A.Voigt and A.Ratz was supported by the 6th Framework program of EU STRP 016447 and German Science Foundation within the Collaborative Research Program SFB 609.
文摘Geometrical evolution laws are widely used in continuum modeling of surface and interface motion in materials science.In this article,we first give a brief review of various kinds of geometrical evolution laws and their variational derivations,with an emphasis on strong anisotropy.We then survey some of the finite element based numerical methods for simulating the motion of interfaces focusing on the field of thin film growth.We discuss the finite element method applied to front-tracking,phase-field and level-set methods.We describe various applications of these geometrical evolution laws to materials science problems,and in particular,the growth and morphologies of thin crystalline films.