期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
CO_(2)capture costs of chemical looping combustion of biomass:A comparison of natural and synthetic oxygen carrier
1
作者 Benjamin Fleiß Juraj Priscak +3 位作者 Martin Hammerschmid Josef Fuchs Stefan Müller Hermann Hofbauer 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期296-310,共15页
Chemical looping combustion has the potential to be an efficient and low-cost technology capable of contributing to the reduction of the atmospheric concentration of CO_(2) in order to reach the 1.5/2°C goal and ... Chemical looping combustion has the potential to be an efficient and low-cost technology capable of contributing to the reduction of the atmospheric concentration of CO_(2) in order to reach the 1.5/2°C goal and mitigate climate change.In this process,a metal oxide is used as oxygen carrier in a dual fluidized bed to generate clean CO_(2) via combustion of biomass.Most commonly,natural ores or synthetic materials are used as oxygen carrier whereas both must meet special requirements for the conversion of solid fuels.Synthetic oxygen carriers are characterized by higher reactivity at the expense of higher costs versus the lower-cost natural ores.To determine the viability of both possibilities,a techno-economic comparison of a synthetic material based on manganese,iron,and copper to the natural ore ilmenite was conducted.The synthetic oxygen carrier was characterized and tested in a pilot plant,where high combustion efficiencies up to 98.4%and carbon capture rates up to 98.5%were reached.The techno-economic assessment resulted in CO_(2) capture costs of 75 and 40€/tCO_(2) for the synthetic and natural ore route respectively,whereas a sensitivity analysis showed the high impact of production costs and attrition rates of the synthetic material.The synthetic oxygen carrier could break even with the natural ore in case of lower production costs and attrition rates,which could be reached by adapting the production process and recycling material.By comparison to state-of-the-art technologies,it is demonstrated that both routes are viable and the capture cost of CO_(2) could be reduced by implementing the chemical looping combustion technology. 展开更多
关键词 chemical looping combustion BECCS Techno-economic assessment CO_(2)capture costs Oxygen carrier development Synthetic materials ILMENITE
下载PDF
Application of Fe_2O_3/Al_2O_3 Composite Particles as Oxygen Carrier of Chemical Looping Combustion 被引量:11
2
作者 Fang He Hua Wang Yongnian Dai 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2007年第2期155-161,共7页
Chemical looping combustion (CLC) of carbonaceous compounds has been proposed, in the past decade, as an efficient method for CO2 capture without cost of extra energy penalties. The technique involves the use of a m... Chemical looping combustion (CLC) of carbonaceous compounds has been proposed, in the past decade, as an efficient method for CO2 capture without cost of extra energy penalties. The technique involves the use of a metal oxide as an oxygen carrier that transfers oxygen from combustion air to fuels. The combustion is carried out in a two-step process: in the fuel reactor, the fuel is oxidized by a metal oxide, and in the air reactor, the reduced metal is oxidized back to the original phase. The use of iron oxide as an oxygen carrier has been investigated in this article. Particles composed of 80 wt% Fe2O3, together with Al2O3 as binder, have been prepared by impregnation methods. X-ray diffraction (XRD) analysis reveals that Fe2O3 does not interact with the Al2O3 binder after multi-cycles. The reactivity of the oxygen carrier particles has been studied in twenty-cycle reduction-oxidation tests in a thermal gravimetrical analysis (TGA) reactor. The components in the outlet gas have been analyzed. It has been observed that about 85% of CH4 converted to CO2 and H2O during most of the reduction periods. The oxygen carrier has kept quite a high reactivity in the twenty-cycle reactions. In the first twenty reaction cycles, the reaction rates became slightly higher with the number of cyclic reactions increasing, which was confirmed by the scanning electron microscopy (SEM) test results. The SEM analysis revealed that the pore size inside the particle had been enlarged by the thermal stress during the reaction, which was favorable for diffusion of the gaseous reactants into the particles. The experimental results suggested that the Fe2O3/Al2O3 oxygen carrier was a promising candidate for a CLC system. 展开更多
关键词 chemical looping combustion iron oxide oxygen carrier CO2 capture
下载PDF
Petroleum coke conversion behavior in catalyst-assisted chemical looping combustion 被引量:3
3
作者 Xianyu Liu Huijun Ge +6 位作者 Shiwei Ma Shangyi Yin Ping Lu Laihong Shen Hongcun Bai Wei Wang Tao Song 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第9期2417-2424,共8页
Efficiently using petroleum coke as fuel and reducing carbon emission meanwhile have become attractive in oil processing industry.The paper is focused on the application of Chemical Looping Combustion(CLC)with petrole... Efficiently using petroleum coke as fuel and reducing carbon emission meanwhile have become attractive in oil processing industry.The paper is focused on the application of Chemical Looping Combustion(CLC)with petroleum coke,with the purpose of investigating its combustion performance and effects of potassium.Some experiments were performed in a laboratory scale fluidized bed facility with a natural manganese-based oxygen carrier.Experimental results indicated that the coke conversion is very sensitive to reaction temperature.The pre sent natural manganese-based oxygen carrier decorated by K has little effect on the improvement of coke conversion.XRD,SEM-EDX,and H2-TPR were adopted to characterize the reacted oxygen carrier samples.After being decorated by K,the oxygen carrier's capacity of transferring oxygen was decrea sed.A calcination temperature above the melting point of K2 CO3(891℃)shows better oxygen transfer reactivity in comparison to the one calcined at a lower temperature.The natural oxygen carrier used in the work has a high content of Si,which can easily react with K to form K(FeSi2 O6).Further,irrespective of reaction temperature,the coke conversion can be significantly enhanced by decorating the coke with K,with a demonstration of remarkably shorter reaction time,faster average coke gasification rate and higher average carbon conversion rate. 展开更多
关键词 chemical looping combustion Oxygen carrier CATALYST COKE
下载PDF
Experimental and mechanistic study on chemical looping combustion of caking coal 被引量:2
4
作者 Xiuli Zhang Zhengdong Gao +3 位作者 Yongzhuo Liu Yuanhao Hou Xiaoqing Sun Qingjie Guo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第9期89-96,共8页
Under high-temperature batch fluidized bed conditions and by employing juye coal as the raw material,the present study determined the effects of the bed material,temperature,OC/C ratio,steam flow and oxygen carrier cy... Under high-temperature batch fluidized bed conditions and by employing juye coal as the raw material,the present study determined the effects of the bed material,temperature,OC/C ratio,steam flow and oxygen carrier cycle on the chemical looping combustion of coal.In addition,the variations taking place in the surface functional groups of coal under different reaction times were investigated,and the variations achieved by the gas released under the pyrolysis and combustion of Juye coal were analyzed.As revealed from the results,the carbon conversion ratio and rate were elevated significantly,and the volume fraction of the outlet CO_(2)remained more than 92%under the oxygen carriers.The optimized reaction conditions to achieve the chemical looping combustion of Juye coal consisted of a temperature of 900℃,an OC/C ratio of 2,as well as a steam flow rate of 0.5 g·min^(-1).When the coal was undergoing the chemical looping combustion,volatiles primarily originated from the pyrolysis of aliphatic-CH_(3)and-CH_(2),and CO and H_(2)were largely generated from the gasification of aromatic carbon.In the CLC process,H_(2)O and CO_(2)began to separate out at 270℃,CH4 and tar began to precipitate at 370℃,and the amount of CO_(2)was continuously elevated with the rise of the temperature. 展开更多
关键词 Caking coal chemical looping combustion Optimized reaction conditions
下载PDF
Investigation of the redox performance of pyrite cinder calcined at different temperature in chemical looping combustion
5
作者 Zhong Ma Guofu Liu +1 位作者 Hui Zhang Yonggang Lu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第8期98-105,共8页
As an industrial solid waste,pyrite cinder exhibited excellent reactivity and cycle stability in chemical looping combustion.Prior to the experiment,oxygen carriers often experienced a high temperature calcination pro... As an industrial solid waste,pyrite cinder exhibited excellent reactivity and cycle stability in chemical looping combustion.Prior to the experiment,oxygen carriers often experienced a high temperature calcination process to stabilize the physico-chemical properties,which presented significant influence on the redox performance of oxygen carriers.However,the effect of calcination temperature on the cyclic reaction performance of pyrite cinder has not been studied in detail.In this work,the effect of calcination temperature on the redox activity and attrition characteristic of pyrite cinder were studied in a fluidizedbed reactor using CH_(4) as fuel.A series of pyrite cinder samples were prepared by controlling the calcination temperature.The redox activity and attrition rate of the obtained pyrite cinder samples were investigated deeply.The results showed that calcination temperature displayed significant impact on the redox performance of pyrite cinder.Considering CH_(4) conversion(80%–85%)and attrition resistance,the pyrite cinder calcined at 1050℃ presented excellent redox properties.In the whole experiment process,the CO_(2) selectivity of the pyrite cinder samples were not affected by the calcination temperature and were still close to 100%.The results can provide reference for optimizing the calcination temperature of pyrite cinder during chemical looping process. 展开更多
关键词 chemical looping combustion Pyrite cinder Calcination temperature CO_(2)capture Attrition Waste treatment
下载PDF
Migration of sulfur in in-situ gasification chemical looping combustion of Beisu coal with iron-and copper-based oxygen carriers
6
作者 Ming Luo Lunzheng Zhou +2 位作者 Jianjun Cai Haiyan Zhang Chao Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第7期247-255,共9页
Chemical looping combustion(CLC)is an energy conversion technology with high efficiency and inherent separation of CO_(2).The existence of sulfur in coal may affect the CO_(2) purity and the performance of oxygen carr... Chemical looping combustion(CLC)is an energy conversion technology with high efficiency and inherent separation of CO_(2).The existence of sulfur in coal may affect the CO_(2) purity and the performance of oxygen carrier due to the interactions between sulfur contaminants and oxygen carrier.The migration of sulfur in Beisu coal during the in-situ gasification chemical looping combustion(i G-CLC)process using two oxygen carriers(iron ore and Cu O/Si O_(2))was investigated respectively.The thermodynamic analysis results showed the formation of metal sulfides was thermodynamically favored at low temperatures and low oxygen excess coefficients,while they were obviously inhibited and the production of SO_(2) was significantly promoted with an increase in temperature and oxygen excess coefficient.Moreover,part of sulfur was captured and fixed in the forms of alkali/alkaline earth metal sulfate due to the high amount of alkali/alkaline earth metal oxides in the coal ash or/and oxygen carrier.The experimental results showed that the sulfur in coal mainly released in the form of SO_(2),and the sulfur conversion efficiency(XS)in the reduction stage were 51.04%and 48.24%when using iron ore and Cu O/Si O_(2) respectively.The existence of metal sulfides was observed in the reduced oxygen carriers.The values of XSin the reoxidation process reached 3.80%and 7.64%when using iron ore and Cu O/Si O_(2) respectively.The residue and accumulation of sulfur were also found on the surfaces of two oxygen carriers. 展开更多
关键词 SO_(2) COAL Iron ore COPPER-BASED chemical looping combustion
下载PDF
Reactivity Investigation on Iron-Titanium Oxides for a Moving Bed Chemical Looping Combustion Implementation
7
作者 Diana C.Campos Jamal Belkouch +1 位作者 Mourad Hazi Aissa Ould-Dris 《Advances in Chemical Engineering and Science》 2013年第1期47-56,共10页
Ilmenite-type natural ore which is constituted mainly of iron-titanium oxide is an interesting candidate as an oxygen carrier in chemical looping combustion (CLC) process. Its reactivity was investigated using methane... Ilmenite-type natural ore which is constituted mainly of iron-titanium oxide is an interesting candidate as an oxygen carrier in chemical looping combustion (CLC) process. Its reactivity was investigated using methane as reducing gas and air as oxidizing gas. Experiments were carried out in a coupled thermogravimetric–thermo differential analyzer (TGA-DTA). When temperature increases from 700℃ to 1000℃, the reaction rate increases by 50 times while the oxygen transfer capacity passes from 1.8% to 12%. TG-DT analyses showed that the overall mass loss due to ilmenite reduction reached at most 12%. It corresponds to 87% of theoretical mass loss due to the transformation of Fe2TiO5 into Fe and TiO2. It is established that the reduction for the iron-titanium oxides occurs in two steps: Fe2TiO5→ FeTiO3→ Fe + TiO2. The titanium reduction from the state TiO2 to the stage Ti3O5 was observed as well. This behavior is supported by XRD analysis. Subsequent oxidation of the reduced mineral led to recover the starting oxide. The stability of iron-titanium oxides was established over 35 looping cycles of oxidation-reduction, with an increase of 5% of oxygen transfer capacity and reactivity in the first 5 cycles and after that, ilmenite reactivity remained constant. At high temperatures, catalytic effect of ilmenite on methane decomposition leading to carbon deposition is observed. The deposited carbon participates in the reactivity of the oxide. 展开更多
关键词 ILMENITE Iron-Titanium Oxides chemical looping combustion CLC METHANE REACTIVITY
下载PDF
Mature versus emerging technologies for CO2 capture in power plants: Key open issues in post-combustion amine scrubbing and in chemical looping combustion 被引量:6
8
作者 Giorgia De Guido Matteo Compagnoni +1 位作者 Laura A. Pellegrini Ilenia Rossetti 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2018年第2期315-325,共11页
Carbon capture and storage (CCS) have acquired an increasing importance in the debate on global wanning as a mean to decrease the environmental impact of energy conversion technologies, by capturing the CO2 produced... Carbon capture and storage (CCS) have acquired an increasing importance in the debate on global wanning as a mean to decrease the environmental impact of energy conversion technologies, by capturing the CO2 produced from the use of fossil fuels in electricity generation and industrial processes. In this respect, post-combustion systems have received great attention as a possible near-term CO2 capture technology that can be retrofitted to existing power plants. This capture technology is, however, energy-intensive and results in large equipment sizes because of the large volumes of the flue gas to be treated. To cope with the demerits of other CCS technologies, the chemical looping combustion (CLC) process has been recently considered as a solution for CO2 separation. It is typically referred to as a technology without energy penalty. Indeed, in CLC the fuel and the combustion air are never mixed and the gases from the oxidation of the fuel (i.e., CO2 and H2O) leave the system as a separate stream and can be separated by condensation of H2O without any loss of energy. The key issue for the CLC process is to find a suitable oxygen carrier, which provides the fuel with the activated oxygen needed for combustion. The aim of this work is to explore the feasibility of using perovskites as oxygen carriers in CLC and to consider the possible advantages with respect to the scrubbing process with amines, a mature post-combustion technology for CO2 separation. 展开更多
关键词 CO2 capture MONOETHANOLAMINE chemical looping combustion oxygen carder perovskites
原文传递
Release characteristics of mercury in chemical looping combustion of bituminous coal 被引量:5
9
作者 Ling Ji Qianwen Wang +3 位作者 Zhiyue Zhang Hao Wu Changsong Zhou Hongmin Yang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第8期197-203,共7页
This study evaluated the release characteristics of mercury from bituminous coal in chemical looping combustion(CLC)using Australian iron ore as the oxygen carrier in a fixed bed reactor.The effects of several paramet... This study evaluated the release characteristics of mercury from bituminous coal in chemical looping combustion(CLC)using Australian iron ore as the oxygen carrier in a fixed bed reactor.The effects of several parameters,such as temperature in the fuel reactor(FR)and air reactor(AR),gasification medium in the FR,and reaction atmosphere in the AR,on mercury release characteristics,were investigated.The mercury speciation and release amount in the FR and AR under different conditions were further explored.The results indicate that most of the mercury in coal was released in the FR,while the rest of it was released in the AR.Hg0 was found to be the major species in the released mercury.The results also indicate that a higher temperature in the FR led to an increase in the total mercury release amount and a decrease in Hg0 proportion.However,a higher temperature in the AR resulted in a decrease in the total mercury release amount and Hg 0 proportion.The increase in the H2O/CO2 ratio of gasification mediums in the FR was beneficial for the increase in the total mercury release amount and Hg 0 proportion.A higher O2 concentration in reaction atmosphere in AR had a negligible effect on the total mercury release amount,but a positive effect on Hg0 oxidization. 展开更多
关键词 chemical looping combustion MERCURY Release amount DISTRIBUTION
原文传递
Sulfur evolution in chemical looping combustion of coal with MnFe_2O_4 oxygen carrier 被引量:5
10
作者 Baowen Wang Chuchang Gao +2 位作者 Weishu Wang Haibo Zhao Chuguang Zheng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第5期1062-1070,共9页
Chemical looping combustion (CLC) of coal has gained increasing attention as a novel combustion technology for its advantages in CO2 capture. Sulfur evolution from coal causes great harm from either the CLC operatio... Chemical looping combustion (CLC) of coal has gained increasing attention as a novel combustion technology for its advantages in CO2 capture. Sulfur evolution from coal causes great harm from either the CLC operational or environmental perspective. In this research, a combined MnFe2O4 oxygen carrier (OC) was synthesized and its reaction with a typical Chinese high sulfur coal, Liuzhi (LZ) bituminous coal, was performed in a thermogravimetric analyzer (TGA)-Fourier transform infrared (FT-IR) spectrometer. Evolution of sulfur species during reaction of LZ coal with MnFeaO40C was systematically investigated through experimental means combined with thermodynamic simulation. TGA-FTIR analysis of the LZ reaction with MnFe2O4 indicated MnFe2O4 exhibited the desired superior reactivity compared to the single reference oxides Mn304 or Fe203, and SO2 produced was mainly related to oxidization of H2S by MnFe2O4. Experimental analysis of the LZ coal reaction with MnFe2O4, including X-ray diffraction and X-ray photoelectron spectroscopy analysis, verified that the main reduced counterparts of MnFe2O4 were Fe304 and MnO, in good agreement with the related thermodynamic simulation. The obtained MnO was beneficial to stabilize the reduced MnFe2O4 and avoid serious sintering, although the oxygen in MnO was not fully utilized. Meanwhile, most sulfur present in LZ coal was converted to solid MnS during LZ reaction with MnFe2O4, which was further oxidized to MnSO4. Finally, the formation of both MnS and such manganese silicates as Mn2SiO4 and MnSiO3 should be addressed to ensure the full regeneration of the reduced MnFe2O4. 展开更多
关键词 CO2 capture chemical looping combustion MnFe2O4
原文传递
Chemical looping combustion: A new low-dioxin energy conversion technology 被引量:5
11
作者 Xiuning Hua Wei Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第6期135-145,共11页
Dioxin production is a worldwide concern because of its persistence and carcinogenic,teratogenic, and mutagenic effects. The pyrolysis-chemical looping combustion process of disposing solid waste is an alternative to ... Dioxin production is a worldwide concern because of its persistence and carcinogenic,teratogenic, and mutagenic effects. The pyrolysis-chemical looping combustion process of disposing solid waste is an alternative to traditional solid waste incineration developed to reduce the dioxin production. Based on the equilibrium composition of the Deacon reaction,pyrolysis gas oxidized by seven common oxygen carriers, namely, Cu O, Ni O, Ca SO4, Co O,Fe2O3, Mn3O4, and Fe Ti O3, is studied and compared with the pyrolysis gas directly combusted by air. The result shows that the activity of the Deacon reaction for oxygen carriers is lower than that for air. For four typical oxygen carriers(Cu O, Ni O, Fe2O3, and Fe Ti O3), the influences of temperature, pressure, gas composition, and tar on the Deacon reaction are discussed in detail. According to these simulation results, the dioxin production in China, Europe, the United States, and Japan is predicted for solid waste disposal by the pyrolysis-chemical looping combustion process. Thermodynamic analysis results in this paper show that chemical looping combustion can reduce dioxin production in the disposal of solid waste. 展开更多
关键词 chemical looping combustion Solid waste Pyrolysis Dioxin Deacon reaction Oxygen carrier
原文传递
Reactivity improvement of ilmenite by calcium nitrate melt infiltration for Chemical Looping Combustion of biomass 被引量:1
12
作者 Martin Keller Hikaru Oka Junichiro Otomo 《Carbon Resources Conversion》 2019年第1期51-58,共8页
Chemical Looping Combustion is a novel process that generates sequestration-ready CO_(2) from the combustion of woody biomass without requiring a gas separation step and without diluting the CO_(2) with N_(2) from air... Chemical Looping Combustion is a novel process that generates sequestration-ready CO_(2) from the combustion of woody biomass without requiring a gas separation step and without diluting the CO_(2) with N_(2) from air.This is achieved by oxidizing the fuel with lattice oxygen of a metal oxide oxygen carrier.When using cheap and abundant ilmenite ore(FeTiO3)as the oxygen carrier,the rather low reactivity towards volatiles released from the biomass upon devolatilization,as well as detrimental structural changes due to a segregation of Fe and Ti in the material,are of concern.These issues can be addressed by modifying ilmenite with Ca via melt infiltration.In this work,we demonstrate that this modification results in a good distribution of Ca throughout the ilmenite particles that a)prevents detrimental Fe/Ti segregation,b)improves the mechanical stability of the particle compared to materials prepared by solution impregnation and c)improves the reactivity of this material towards hydrogen and wet methane.Moreover,fixed bed experiments showed that the Ca modification not only resulted in increased methane conversion,but also in an increased degree of oxidation of gaseous intermediates CO and H2.We thus conclude that the performance of ilmenite in Chemical Looping processes can be significantly enhanced by Ca modification of ilmenite either prior to use or in-situ during operation of this bed material with Ca-rich fuels such as woody biomass. 展开更多
关键词 Carbon dioxide removal chemical looping combustion ILMENITE Melt infiltration BECCS Biomass combustion
原文传递
Modeling and scale analysis of gaseous fuel reactors in chemical looping combustion systems
13
作者 Jesper Aronsson David Pallares Anders Lyngfelt 《Particuology》 SCIE EI CAS CSCD 2017年第6期31-41,共11页
This work investigates the scale-up of chemical looping combustion (CLC), a next-generation technology for carbon capture and storage, to the industrial scale. The study focused on the bottom bed of the unit, which ... This work investigates the scale-up of chemical looping combustion (CLC), a next-generation technology for carbon capture and storage, to the industrial scale. The study focused on the bottom bed of the unit, which was considered to be the critical region during scale-up due to the large solids inventory in this zone combined with relatively inefficient gas-solids contact. Two CLC reactors of vastly different sizes (bench and utility scale) were studied to discern their difference related to scale-up via a one-dimensional model. This model considered kinetics that varied with the degree of oxidation and population distribution of the oxygen carriers, the mixing of which accounts for both convective and dispersive transport. The model was validated against bench scale data, and was used to evaluate the performance of a 1000 MWth CLC fuel reactor using either syngas or methane as fuels. Sensitivity analyses were also carried out with this model to determine the effects of several parameters on fuel conversion, including solids circulation, oxygen carrier reactivity, bed height, and maximum bubble size. The results show that the mass transfer of gas from bubbles to the emulsion phase represents a significant limiting factor for fuel conversion in the bottom bed of a utility scale fuel reactor. 展开更多
关键词 chemical looping combustion Semi-empirical modeling FLUIDIZATION Up scaling
原文传递
Boosting chemical looping combustion performances of red mud with transition metal oxides
14
作者 Jingchong Yan Li Zhang +6 位作者 Jing He Muxin Liu Zhiping Lei Zhanku Li Zhicai Wang Shibiao Ren Hengfu Shui 《Carbon Resources Conversion》 2022年第2期119-130,共12页
Red mud(RM)is industrial solid waste that severely threatens environmental safety,and its resource utilization is significant both economically and ecologically.The presence of ferric oxides(Fe_(2)O_(3))makes RM poten... Red mud(RM)is industrial solid waste that severely threatens environmental safety,and its resource utilization is significant both economically and ecologically.The presence of ferric oxides(Fe_(2)O_(3))makes RM potential oxygen carriers(OC)for chemical looping combustion(CLC),which is a promising,novel and low-carbon combustion technology.This work examined the CLC performance of two kinds of RM using gaseous and solid fuels.Both Fe_(2)O_(3) and alkali and alkaline-earth metals(AAEM)species within RM enhance carbon conversion during CLC.Nevertheless,the reactivity of original RM is unsatisfactory due to its low oxygen transporting capacity(R_(0),lower than 0.1),carbon conversion(X_(C),less than 0.8),CO_(2) selectivity(Y_(CO_(2)),less than 0.9)and instable performance.Transition metal oxides including CuO and NiO were used to modify the RM through wet impregnation.Both oxides notably improve RM performances,i.e.,X_(C) and Y_(CO_(2)) are notably increased.Still,deteriorations during redox cycles are observed because of particle agglomeration and sintering,especially for the RM modified with NiO.Considering the cost,potential environmental risk and efficacy,CuO is superior to NiO thanks to the enhanced performances of the modified RM-based OC including higher X_(C)(about 0.9),Y_(CO_(2))(approximately 1)and stronger sintering resistance. 展开更多
关键词 Red mud chemical looping combustion Oxygen carriers REACTIVITY AGGLOMERATION
原文传递
Numerical and experimental analysis for simulating fuel reactor in chemical looping combustor system 被引量:2
15
作者 Tamer M.Ismail Lu Ding +1 位作者 Khaled Ramzy MAbd El-Salam 《International Journal of Coal Science & Technology》 EI 2020年第3期551-559,共9页
The greenhouse problem has a significant effect on our communities such as,health and climate.Carbon dioxide is one of the main gases that cause global warming.Therefore,CO2 capture techniques have been the focus of a... The greenhouse problem has a significant effect on our communities such as,health and climate.Carbon dioxide is one of the main gases that cause global warming.Therefore,CO2 capture techniques have been the focus of attention these days.The chemical looping combustion technique adopted the air reactor and fuel reactor to recycle heat energy.This study presents a numerical and experimental investigation on a fuel reactor in chemical looping combustor(CLC)system.The present numerical model is introduced by the kinetic theory of granular flow and coupled with gas–solid flow with chemical reactions to simulate the combustion of solids in the CLC.The k–εturbulent model was used to model the gas phase and the particle phase.The developed model simplify the prediction of flow patterns,particle velocities,gas velocities,and composition profiles of gas products and the distribution of heterogeneous reaction rates under the same operating conditions.The predicted and experimental results were compared according to the basis of determination coefficient(R2).In addition the results showed that there is a good agreement between the predicted and experimental data.The value of(R2)for CO,CO2 and CH4 was 0.959,0.925 and 0.969 respectively.This shows that the present model is a promising simulation for solid particle combustion and gives the power direction for the design and optimization of the CLC systems. 展开更多
关键词 chemical looping combustion Mathematical modeling Fluidized bed COAL Kinetic model
下载PDF
Performance and kinetics of iron-based oxygen carriers reduced by carbon monoxide for chemical looping combustion 被引量:2
16
作者 Xiuning HUA Wei WANG Feng WANG 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2015年第6期1130-1138,共9页
Chemical looping combustion is a promising technology for energy conversion due to its low-carbon, high-efficiency, and environmental-friendly feature. A vital issue for CLC process is the development of oxygen carrie... Chemical looping combustion is a promising technology for energy conversion due to its low-carbon, high-efficiency, and environmental-friendly feature. A vital issue for CLC process is the development of oxygen carrier, since it must have sufficient reactivity. The mechanism and kinetics of CO reduction on iron-based oxygen carriers namely pure Fe2O3 and Fe2O3 supported by alumina (Fe2O3/Al2O3) were investigated using thermo-gravimetric analysis. Fe2O3/Al2O3 showed better reactivity over bare Fe2O3 toward CO reduction. This was well supported by the observed higher rate constant for FezO3/Al2O3 over pure Fe2O3 with respective activation energy of 41.1±2.0 and 33.3±0.8 kJ. mol^-1. The proposed models were compared via statistical approach comprising Akaike information criterion with correction coupled with F-test. The phase-boundary reaction and diffusion control models approximated to 95% confidence level along with scanning electron microscopy results; revealed the promis- ing reduction reactions of pure Fe203 and Fe2O3/Al2O3. The boosting recital of iron-based oxygen carrier support toward efficient chemical looping combustion could be explained accurately through the present study. 展开更多
关键词 chemical looping combustion iron-basedoxygen carriers reduction kinetics carbon monoxide statistics
原文传递
Reaction characteristics investigation of CeO_(2)-enhanced CaSO_(4) oxygen carrier with lignite 被引量:2
17
作者 Baowen Wang Zhongyuan Cai +4 位作者 Heyu Li Yanchen Liang Tao Jiang Ning Ding Haibo Zhao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第2期319-328,共10页
Calcium sulfate(CaSO_(4))has been verified as a promising oxygen carrier(OC)in the chemical looping combustion(CLC)for its high oxygen capacity,abundant reserve and low cost,but its low reactivity and deleterious sulf... Calcium sulfate(CaSO_(4))has been verified as a promising oxygen carrier(OC)in the chemical looping combustion(CLC)for its high oxygen capacity,abundant reserve and low cost,but its low reactivity and deleterious sulfur species emission from the side reactions of CaSO_(4) should be well considered for its wide application in CLC.In order to promote the reactivity of CaSO_(4) and increase its potential to inhibit the gaseous sulfur emission,a CeO_(2)-enhanced CaSO_(4) OC mixed OC of core–shell structure was prepared using the combined template synthesis method.Reaction characteristics of the prepared CaSO_(4)-CeO_(2) mixed OC with a typical lignite was first conducted and systematically investigated,and an improved reactivity of the prepared CaSO_(4)-CeO_(2) mixed OC was demonstrated than its single component CaSO_(4) or CeO_(2) due to the fast transfer and exchange of oxygen from the CaSO_(4) substrate to coal via the doped CeO_(2).Furthermore,the solid products formed from the mixed CaSO_(4)-CeO_(2) OC with the selected coal were collected and analyzed.Especially,evolution and redistribution of the sulfur species of different forms were focused.At the latter reaction stage of YN reaction with the CaSO_(4)-CeO_(2) mixed OC,the SO_(2) emitted from the side reactions of CaSO_(4) was greatly diminished and the doped CeO_(2) was proven effective to directionally fix the SO_(2) released to turn into different solid sulfur compounds,which were determined as Ce_(2)O_(2)S,Ce_(2)S_(3) and Ce_(2)(SO_(4))_(3)·5H_(2)O and formed through the different pathways.In addition,good regeneration of the reduced CaSO_(4)-CeO_(2) mixed OC could be reached in spite of the unavoidable interaction between the included minerals in coal and the reduced mixed OC.Overall,the combined template method-made CaSO_(4)-CeO_(2) mixed OC reported herein was not only endowed with enhanced reactivity for coal conversion,but also owned the potential to directionally fix the gaseous sulfur emission,which is quite applicable as OC for simultaneous decarbonatization and desulfurization in the real CLC process. 展开更多
关键词 Coal combustion CO_(2)capture chemical looping combustion CaSO4 mixed oxygen carrier Template combined synthesis method Sulfur evolution
下载PDF
环境催化中的陶瓷材料:应用与可能性(英文) 被引量:1
18
作者 Nitin LABHSETWAR P.DOGGALI +3 位作者 S.RAYALU R.YADAV T.MISTUHASHI H.HANEDA 《催化学报》 SCIE EI CAS CSCD 北大核心 2012年第10期1611-1621,共11页
Environmental catalysis has been steadily growing because of the advances in its scientific and engineering aspects,as well as due to the new environmental challenges in the industrial era.The development of new catal... Environmental catalysis has been steadily growing because of the advances in its scientific and engineering aspects,as well as due to the new environmental challenges in the industrial era.The development of new catalysts and materials is essential for new technologies for various environmental applications.Ceramics play important roles in various environmental applications including the identification,monitoring,and quantification of pollutants and their control.Ceramics have important applications as sensors and photocatalysts,and they are extensively used as catalyst carriers and supports.Many ceramics are being explored as catalysts for pollution control applications.Their low cost,thermal and chemical stability,and capability of being tailored make them especially attractive for pollution control applications.Although a wide variety of materials have been developed as catalyst supports,this area is still of interest with new or modified catalyst supports being frequently reported.It is of equal importance to develop new or modified processes for the loading of catalysts on specific supports.Applications like chemical looping combustion(CLC) and other catalytic combustion processes are raising the demands to a new scale.We have been working on the development of both new and modified support materials,including mesoporous materials without structural order for possible applications in CLC and other catalytic reactions.Successful attempts have been made in the modification of conventional γ-Al2O3 and improved synthesis processes for supporting perovskite type catalysts.Our research on environmental catalysis applications of ceramic materials and processes are also briefly discussed. 展开更多
关键词 CERAMICS environmental catalysis perovskite catalyst CARBONATION catalyst support catalytic emission control chemical looping combustion
下载PDF
Density Functional Study of the C Atom Adsorption on the α-Fe_2O_3 (001) Surface 被引量:2
19
作者 董长青 张晓磊 杨勇平 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2011年第1期17-24,共8页
The adsorption of C atoms on the α-Fe2O3(001) surface was studied based on density function theory(DFT) ,in which the exchange-correlation potential was chosen as the PBE(Perdew,Burke and Ernzerhof) generalized... The adsorption of C atoms on the α-Fe2O3(001) surface was studied based on density function theory(DFT) ,in which the exchange-correlation potential was chosen as the PBE(Perdew,Burke and Ernzerhof) generalized gradient approximation(GGA) with a plane wave basis set. Upon the optimization on different adsorption sites with coverage of 1/20 and 1/5 ML,it was found that the adsorption of C atoms on the α-Fe2O3(001) surface was chemical adsorption. The coverage can affect the adsorption behavior greatly. Under low coverage,the most stable adsorption geometry lied on the bridged site with the adsorption energy of about 3.22 eV; however,under high coverage,it located at the top site with the energy change of 8.79 eV. Strong chemical reaction has occurred between the C and O atoms at this site. The density of states and population analysis showed that the s,p orbitals of C and p orbital of O give the most contribution to the adsorption bonding. During the adsorption process,O atom shares the electrons with C,and C can only affect the outermost and subsurface layers of α-Fe2O3; the third layer can not be affected obviously. 展开更多
关键词 α-Fe2O3 (001) C atom density functional theory adsorption chemical looping combustion
下载PDF
Simultaneous syngas production with different H_2/CO ratio in a multi-tubular methane steam and dry reformer by utilizing of CLC
20
作者 Mohsen Abbasi Mehdi Farniaei +1 位作者 Mohammad Reza Rahimpour Alireza Shariati 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第1期54-64,共11页
For syngas production, the combustion of fossil fuels produces large amounts of CO2 as a greenhouse gas annually which intensifies global warming. In this study, chemical looping combustion (CLC) has been utilized f... For syngas production, the combustion of fossil fuels produces large amounts of CO2 as a greenhouse gas annually which intensifies global warming. In this study, chemical looping combustion (CLC) has been utilized for the elimination of CO2 emission to atmosphere during simultaneous syngas production with different H2/CO ratio in steam reforming of methane (SR) and dry reforming of methane (DR) in a CLC-SR-DR configuration. In CLC-SR-DR with 184 reformer tubes (similar to an industrial scale steam reformer in Zagros Petrochemical Company, Assaluyeh, Iran), DR reaction occurs over Rh-based catalysts in 31 tubes. Also, SR reaction is happened over Ni-based catalysts in 153 tubes. CLC via employment of Mn-based oxygen carriers supplies heat for DR and SR reactions and produces CO2 and H2O as raw materials simultaneously. A steady state heterogeneous catalytic reaction model is applied to analyze the performance and applicability of the proposed CLC-SR-DR configuration. Simulation results show that combustion efficiency reached 1 at the outlet of fuel reactor (FR). Therefore, pure CO2 and H2O can be recycled to DR and SR sides, respectively. Also, CH4 conversion reached 0.2803 and 0.7275 at the outlet of SR and DR sides, respectively. Simulation results indicate that, 3223 kmol.h-l syngas with a H2/CO ratio equal to 9.826 was produced in SR side of CLC-SR-DR. After that, 1844 kmol.h-1 syngas with a H2/CO ratio equal to 0.986 was achieved in DR side of CLC-SR-DR. Results illustrate that by increasing the number of DR tubes to 50 tubes and considering 184 fixed total tubes in CLC-SR-DR, CH4 conversions in SR and DR sides decreased 2.69% and 3.31%, respectively. However, this subject caused total syngas production in SR and DR sides (in all of 184 tubes) enhance to 5427 kmol-h-1. Finally, thermal and molar behaviors of the proposed configuration demonstrate that CLC-SR-DR is applicable for simultaneous syngas production with high and low Hx/CO ratios in an environmental friendly process. 展开更多
关键词 chemical looping combustion (CLC) dry reforming of methane (DR) steam reforming of methane carbon dioxide capturing syngas produc-tion
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部