The kinetics of aniline degradation by persulfate processes with iron(Ⅱ) activation at ambient temperature was investigated in this study.With iron(Ⅱ) as initiator,the oxidation reactions were found to follow a ...The kinetics of aniline degradation by persulfate processes with iron(Ⅱ) activation at ambient temperature was investigated in this study.With iron(Ⅱ) as initiator,the oxidation reactions were found to follow a biphasic rate phenomenon:a rapid transformation followed by a slow but sustained oxidation process.In the first 30 s,the reaction mainly relies on the persulfate-Fe^(2+) reaction in which aniline is oxidized rapidly.After 30 s,the aniline was still oxidized but the rate of reaction tended to be slower and the rates were clearly linear-proportional.After the initial fast oxidation,the reactions appeared to follow a pseudo-first-order model.展开更多
Anode material for lithium ion battery is prepared by chemical oxidation of natural graphite. After oxidation, the properties of natural graphite are modified, such as surface structure, the content of graphite phases...Anode material for lithium ion battery is prepared by chemical oxidation of natural graphite. After oxidation, the properties of natural graphite are modified, such as surface structure, the content of graphite phases, the number of micropores and its stability. thus the modified natural graphite can be used as anode material for commercial lithium ion battery. The reversible capacity is increased from 100 mAh/g to above 300 mAh/g, and its cycling properly is also satisfactory.展开更多
Acidic black 10B dye wastewater was treated by chemical oxidation and adsorption of activated carbon fixed bed and all kinds of influential factors of removal CODcr were discussed. When the initial concentration of th...Acidic black 10B dye wastewater was treated by chemical oxidation and adsorption of activated carbon fixed bed and all kinds of influential factors of removal CODcr were discussed. When the initial concentration of the dye was 150 mg/L, CODer was 432 mg/L and chrome was 2800 times, the appropriate conditions determined by the experiment were as follows: r(NaC10)--4.84 g/L, 25 min, pH=6, height of activated carbon fixed bed was 10 cm. Under these conditions, the decolorizing rate can come up to about 100% and total removed rate of CODer reached at 89.6%. Comparison of UV-Vis adsorption spectrums before and after treatment showed that decomposition effects of chemical oxidation and adsorption of activated carbon fixed bed on acidic black 10B dye wastewater were satisfactory.展开更多
Many studies have successfully built iron-mediatedmaterials to activate or catalyze Fentonlike reactions,with applications in water and wastewater treatment being investigated.However,the developed materials are rarel...Many studies have successfully built iron-mediatedmaterials to activate or catalyze Fentonlike reactions,with applications in water and wastewater treatment being investigated.However,the developed materials are rarely compared with each other regarding their performance of organic contaminant removal.In this review,the recent advances of Fentonlike processes in homogeneous and heterogeneous ways are summarized,especially the performance and mechanism of activators including ferrous iron,zero valent iron,iron oxides,iron-loaded carbon,zeolite,and metal organic framework materials.Also,this work mainly compares three O-O bond containing oxidants including hydrogen dioxide,persulfate,and percarbonate,which are environmental-friendly oxidants and feasible for in-situ chemical oxidation.The influence of reaction conditions,catalyst properties and benefits are analyzed and compared.In addition,the challenges and strategies of these oxidants in applications and the major mechanisms of the oxidation process have been discussed.This work can help understand the mechanistic insights of variable Fenton-like reactions,the role of emerging iron-based materials,and provide guidance for choosing appropriate technologies when facing real-world water and wastewater applications.展开更多
Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for converting ethane to ethylene.In the current study MeO/LaCoO_(3)(MeO=Fe_(2)O_(3),NiO or Co_(2)O_(3))composite metal oxides w...Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for converting ethane to ethylene.In the current study MeO/LaCoO_(3)(MeO=Fe_(2)O_(3),NiO or Co_(2)O_(3))composite metal oxides were prepared via citrate gel and impregnation methods,and used as oxygen carriers for CL-ODH.X-ray diffraction results indicated that all oxygen carriers had a perovskite structure even after eight redox cycles.Under a reaction temperature of 650°C,a reaction pressure of 0.1 MPa,and a weight hourly space velocity(WHSV)of 7500 mL/(g·h),ethane conversion over Co_(2)O_(3)/LaCoO_(3) reached 100%and ethylene selectivity reached 60%,both of which were better than corresponding values attained over Fe_(2)O_(3)/LaCoO_(3) and NiO/LaCoO_(3).Ethylene selectivity remained stable for 80 cycles over Co_(2)O_(3)/LaCoO_(3),then decreased gradually after 80 cycles.X-ray photoelectron spectroscopy results and evaluation results indicated that lattice oxygen and O_(2)2-had a direct relationship with ethane conversion and ethylene selectivity.Co_(2)O_(3)/LaCoO_(3) exhibited a strong capacity to release and absorb oxygen,mainly due to interaction between Co_(2)O_(3) and LaCoO_(3).展开更多
Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for ethylene preparation.Fe_(2)O_(3)/MgO oxygen carrier was prepared using the co-precipitation method.The influence of added Ni...Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for ethylene preparation.Fe_(2)O_(3)/MgO oxygen carrier was prepared using the co-precipitation method.The influence of added NiO and its different loadings on Fe_(2)O_(3)/MgO were investigated.Then,a series of oxygen carriers were applied in the CL-ODH of the ethane cycle system.Brunauer-Emmett-Teller(BET),X-ray diffractometry(XRD),X-ray photoelection spectroscopy(XPS),and H2-temperature programmed reduction(TPR)were used to characterize the physicochemical properties of these oxygen carriers.It was confirmed that an interaction between NiO and Fe_(2)O_(3) occurred based on the XPS and H2-TPR results.Based on the CL-ODH activity performance tests conducted in a fixed-bed reactor,it was revealed that ethylene selectivity was significantly improved after NiO addition.Fe_(2)O_(3)-10%NiO/MgO showed the best activity performance with 93%ethane conversion and 50%ethylene selectivity at a reaction temperature of 650℃,atmospheric pressure,and space velocity of 7500 mL/(g·h).展开更多
Fenton and ozone treatment was investigated at laboratory scale for the degradation of aqueous solutions of nitrobenzene (NB). Effects of reactants concentration (O3, H2O2, and Fe(Ⅱ)), temperature, and pH on NB...Fenton and ozone treatment was investigated at laboratory scale for the degradation of aqueous solutions of nitrobenzene (NB). Effects of reactants concentration (O3, H2O2, and Fe(Ⅱ)), temperature, and pH on NB degradation were monitored. Reaction kinetic of these processes was also assessed. A rapid reaction took place for Fenton process at higher initial concentration of H2O2, higher temperatures, and more acidic conditions (pH 3). Similarly, ozonation reaction exhibited rapid rates for higher ozone dose, higher temperatures, and more basic conditions (pH 11). Complete NB degradation in 65 min was achieved using Fenton process. The conditions of complete elimination of 100 mg/L of initial NB concentration, were 250 mg/L of H202 concentration, pH 3, and 10 mg/L of Fe(Ⅱ) concentration. Under these conditions, 55% organic carbon elimination was achieved. Total organic carbon mineralization was attained in 240 rain reaction time by Fenton process with 900 mg/L of H202 concentration, and 30 mg/L of Fe(Ⅱ) concentration. Fenton reaction showed a pseudo-first order kinetic; the reaction rate constant was ranged from 0.0226 to 0.0658 min^-1. Complete NB degradation was also achieved for an ozone dose of the order of 2.5 g/L. The ozonation was studied at different ozone doses, different initial pH (7-11) and at different temperatures (15-35℃). NB ozonation kinetic was represented by a bi-molecular kinetic model which was reduced to pseudo-first order kinetic. The pseudo-first order reaction rate constant was determined to increase at 20℃ from 0.004 to 0.020 min^-1 as the used ozone increased from 0.4 to 1.9 g/L.展开更多
Decoloration of acidic scarlet GR by pyrolusite is studied in this paper. The effects of pH in solution, dosage and granularity of pyrolusite, reaction temperature, and vibration speed on decoloration efficiency are d...Decoloration of acidic scarlet GR by pyrolusite is studied in this paper. The effects of pH in solution, dosage and granularity of pyrolusite, reaction temperature, and vibration speed on decoloration efficiency are discussed. According to experiment results, the decoloration efficiency may exceed 95% for 40 mg/L GR solution by pyrolusite, pH is most important among all factors which impact the decoloration of acidic scarlet GR. Dosage and granularity of pyrolusite, reaction temperature, and vibration speed have a little benitfit on decoloration. The high decoloration efficiency and low removal efficiency of COD as well as FT-IR spectra of products between pyrolusite and acidic scarlet GR indicate that acidic scarlet GR undergoes the redox reaction on the interface of mineral and its chromophore is oxidated and decolored, but it is not removed thoroughly by oxidation.展开更多
Nicotinic acid was synthesized from 3 methylpyridine with potassium dichromate as the oxidant. The reaction conditions, the product separation and analysis were studied. The results indicate that under the certain re...Nicotinic acid was synthesized from 3 methylpyridine with potassium dichromate as the oxidant. The reaction conditions, the product separation and analysis were studied. The results indicate that under the certain reaction conditions, the yield of nicotinic acid can reach 67.4%, the conversion can reach 99.7% and the selectivity can be as high as 99.8%. The final product has a high purity.展开更多
An in situ characterization technique called electrochemical noise(ECN) was used to investigate the bioleaching of natural pyrite.ECN experiments were conducted in four active systems(sulfuric acid,ferric-ion,9k cu...An in situ characterization technique called electrochemical noise(ECN) was used to investigate the bioleaching of natural pyrite.ECN experiments were conducted in four active systems(sulfuric acid,ferric-ion,9k culture medium,and bioleaching solutions).The ECN data were analyzed in both the time and frequency domains.Spectral noise impedance spectra obtained from power spectral density(PSD)plots for different systems were compared.A reaction mechanism was also proposed on the basis of the experimental data analysis.The bioleaching system exhibits the lowest noise resistance of 0.101 MΩ The bioleaching of natural pyrite is considered to be a bio-battery reaction,which distinguishes it from chemical oxidation reactions in ferric-ion and culture-medium(9k) solutions.The corrosion of pyrite becomes more severe over time after the long-term testing of bioleaching.展开更多
The goal of this topic is a synthesis of the main characteristics of iron in groundwater and the oxidation process used to remove it. Indeed, the kinetics of chemical oxidation of iron (II) was examined with reconstit...The goal of this topic is a synthesis of the main characteristics of iron in groundwater and the oxidation process used to remove it. Indeed, the kinetics of chemical oxidation of iron (II) was examined with reconstituted water (distilled water + iron sulphate) and proceeded to the application in the groundwater samples taken from <em><strong>South Pout</strong></em> (Senegal) precisely in the drilling <strong>PS2</strong>. The sources of iron are natural or anthropogenic. In Senegalese waters, its content is variable and sometimes exceeds the standards of potability. Despite the diversification of iron removal process, chemical oxidation is the most used solution in drinking water treatment plants in Senegalese rural areas. Applied oxidation processes such as aeration and chlorination, however, are insufficient to produce drinking water with an iron concentration in accordance with standards of potability.展开更多
Nitric oxide(NO),a bioactive signaling molecule,serves as an antioxidant and anti-stress agent under abiotic stress.A hydroponics experiment was conducted to investigate the effects of sodium nitroprusside(SNP),a ...Nitric oxide(NO),a bioactive signaling molecule,serves as an antioxidant and anti-stress agent under abiotic stress.A hydroponics experiment was conducted to investigate the effects of sodium nitroprusside(SNP),a NO donor,on tomato seedlings exposed to 50 μmol L-1CuCl 2.The results show that copper is primarily stored in the soluble cell sap fraction in the roots,especially after treatment with Cu+SNP treatment,which accounted for 66.2% of the total copper content.The copper concentration gradually decreased from the roots to the leaves.In the leaves,exogenous NO induces the storage of excess copper in the cell walls.Copper stress decreases the proportion of copper integrated with pectates and proteins,but exogenous NO remarkably reverses this trend.The alleviating effect of NO is blocked by hemoglobin.Thus,exogenous NO is likely involved in the regulation of the subcellular copper concentrations and its chemical forms under copper stress.Although exogenous NO inhibited the absorption and transport of excess copper to some extent,the copper accumulation in tomato seedlings significantly increased under copper stress.The use of exogenous NO to enhance copper tolerance in some plants is a promising method for copper remediation.展开更多
The hydrophobic films of TixOy-CmHn. deposited from mixture gases of titanium isopropoxide (TTIP) and oxygen by plasma enhanced chemical vapor deposition (PECVD) were investigated. The films were investigated by s...The hydrophobic films of TixOy-CmHn. deposited from mixture gases of titanium isopropoxide (TTIP) and oxygen by plasma enhanced chemical vapor deposition (PECVD) were investigated. The films were investigated by scanning electron microscope ( SEM ), transmission electron microscope ( TEM ), Fourier transform infrared spectrometer ( FTIR), X-Ray diffraction ( XRD ), element analysis ( EA ), ultraviolet visible spectrometer ( UV-Vis), and water contact angle (WCA). The results reveal that the surface of the films is formed by mierosized papillaes aggregated by inorganic and organic phases of complex nanoparticles with size from 50 nm to 200 nm when the discharge power is increased from 40 W to 150 W. All fdms demonstrate the strong broad of Ti-O-Ti stretching vibration at 400 -800cm-1, -CH bending vibration at 1 388 cm -1, and broadening -OH stretching vibration at 3 000-3500 cm-1 With the increase of the discharge power, the asdeposited film changes from amorphous to crystallization. The WCA of the film can be as high as 160°, indicating the hydrophobicity. The films show a similar ultraviolet absorption property as the bulk TiO2 film. The composition of the composition of film deposited at 150 W can be formulated as Tio.302-C1.5H3. Therefore, the composition formula of this hydrophobic film could be expressed as TiO2-C5H10O4.7. It is believed that the complex micro/nano structures of TiO2 and C5H10O4.7 residues are responsible for the observed hydrophobicity and the ultraviolet absorption property of the film.展开更多
A PANI/TiO2 composite film deposited on the glass surface was successfully prepared using sol-gel dip-coating technique and chemical oxidation method. The film was characterized using XRD, AFM, and UV. The result show...A PANI/TiO2 composite film deposited on the glass surface was successfully prepared using sol-gel dip-coating technique and chemical oxidation method. The film was characterized using XRD, AFM, and UV. The result showed that the TiO2 film consists of both cuboid-shaped and anatase-phased TiO2 nanoparticles. The average grain size of TiO2 in the film was approximately 20 nm. After coating with PANI, the particle was changed into irregular spherical-shaped and the size was increased up to approximately 35 nm in diameter. UV-Vis spectroscopy analysis indicated that the coating of TiO2 with PANI would result in an enhancement of photocatalytic efficiency and an extension of the photoresponse of TiO2. The band gap of the PANI/TiO2 film was 3.18 eV. The photocatalytic property of the film was evaluated by the degradation of rhodamine-B. It was found that 67.1% and 83.2% of rhodamine-B could be degraded under sunlight and UV irradiation within 120 min using the PANI/TiO2 composite t-tim as photocatalyst.展开更多
The rational design of double active sites system is vital for constructing high-efficiency iron sulfides electrocatalysts towards hydrogen evolution reaction(HER) in alkaline media. However, it remains a challenge to...The rational design of double active sites system is vital for constructing high-efficiency iron sulfides electrocatalysts towards hydrogen evolution reaction(HER) in alkaline media. However, it remains a challenge to controllably create the high-density interface of double sites for optimal synergistic effect.Herein, we reported a simple chemical oxidation-induced surface reconfiguration strategy to obtain the interface-rich Fe_(3)O_(4)-FeS nanoarray supported on iron foam(Fe_(3)O_(4)-FeS/IF) using FeS nanosheets as precursors. The abundant Fe_(3)O_(4)-FeS interfaces could improve the dispersion of active sites and facilitate the electron transfer, leading to enhanced hydrogen evolution efficiency. And meanwhile, by altering the oxidation temperature, the content of S and O could be effectively controlled, further achieving the ratio optimization of Fe_(3)O_(4)to FeS. Synchrotron-based X-ray absorption near-edge structure, X-ray photoelectron spectroscopy and ultraviolet photoemission spectroscopy consistently confirm the changes of electronic structure and d-band center of Fe_(3)O_(4)-FeS after chemical oxidation. Consequently, Fe_(3)O_(4)-FeS/IF exhibits excellent alkaline HER activity with a low overpotential of 120.8 mV to reach 20 mA cm^(-2),and remains stable ranging from 10, 20 to 50 mA cm^(-2) for each 20 h, respectively. Therefore, the facile and controllable chemical oxidation may be an effective strategy for designing high-density interfaces of transition metal-based sulfides towards alkaline HER.展开更多
A computational fluid dynamics(CFD)numerical simulation and field experiment were used to investigate optimal operating parameters of high-pressure jet grouting equipment and clarify the boundary law of the injection ...A computational fluid dynamics(CFD)numerical simulation and field experiment were used to investigate optimal operating parameters of high-pressure jet grouting equipment and clarify the boundary law of the injection area in the remediation process.The response surface optimization design results show that the optimal injection pressure is 30 MPa,rotation speed is 23 r/min,commission speed is 30 cm/min,and the optimal injection diameter is 147.3 cm.Based on the CFD numerical simulation,the ratio of the injection core,turbulent zone,and seepage zone is approximately 1∶4∶2.The distribution law of jet core,turbulence zone and seepage zone at different cross-sections under 30 MPa operating conditions is as follows:The jet core radius is approximately 100 mm,the turbulence zone is mainly distributed at 100 to 500 mm,the seepage zone is mainly distributed at 500 to 700 mm,the seepage zone could be completed within 2 h,and the proportion of the three boundary zones in the injection zone is similar to that of the numerical simulation.This study provides theoretical parameters and practical reference for the remediation of deep pollution via in-situ chemical oxidation in the Loess Plateau soil environment.展开更多
Nine kinds of reactive dye solutions: Reactive K -2RL, H-E2R, X-6B1Y, HE-4G, X-3B, K-2R, H - E7B, X -4RN and S - F3B were treated by using Fenton reagent. While the concentration of dye is 400 mg/L, the FeSO4 dosage 1...Nine kinds of reactive dye solutions: Reactive K -2RL, H-E2R, X-6B1Y, HE-4G, X-3B, K-2R, H - E7B, X -4RN and S - F3B were treated by using Fenton reagent. While the concentration of dye is 400 mg/L, the FeSO4 dosage 100 -180 mg/L, H2O2 240 -540 mg/L, that is the stoichiometric numbers of Fe2+ and H2O2 are between 1: 9 - 1:12, pH = 3, reaction tune In, temperature 25℃, the colority removal efficiency reach more than 95%, the COD removal efficiency 65% -85%, and the TOC removal efficiency 70.2%. By comparing UV-VIS absorption spectrum before and after treatment, it further shows that decomposition effect of Fenton reagent on these nine kinds of reactive dyes is satisfactory.展开更多
Lithium/polypyrrole (Li/PPy) batteries were fabricated using lithium sheet as cathode, PPy as anode, microporous membrane polypropylene/polyethylene/polypropylene (PP/PE/PP) composite as separator and LiPF6/ethyle...Lithium/polypyrrole (Li/PPy) batteries were fabricated using lithium sheet as cathode, PPy as anode, microporous membrane polypropylene/polyethylene/polypropylene (PP/PE/PP) composite as separator and LiPF6/ethylene carbonate-dimethyl carbonate-methyl ethyl carbonate (EC-DMC-EMC) as electrolyte. Polypyrrole was prepared by chemical polymerization. Certain fundamental electrochemical performances were investigated. Properties of the batteries were characterized and tested by SEM, galvanostatic charge/discharge tests, cyclic voltammetry (CV), and a.c. impedance spectroscopy. The influences of separator, morphology, and conductivity of PPy anode, cold-molded pressure, and electric current on the performances of the batteries were studied. Using PP/PE/PP membranes as separator, the battery showed good storage stability and cycling property. The conductivity of materials rather than morphology affected the behavior of the battery. The higher the conductivity, the better performances the cells had. Proper cold-molded pressure 20 MPa of the anode pellet would make the properties of the cells good and the fitted charge/discharge current was 0.1 mA. The cells showed excellent performance with 97%-100% coulombic efficiency. The highest discharge capacity of 95.2 mAh/g was obtained.展开更多
Surface self-magnetization of siderite is achieved by generating ferromagnetic substance on the surface of siderite by adjusting slurry temperature,pH value,stirring rate and reaction time.No addition of any iron-cont...Surface self-magnetization of siderite is achieved by generating ferromagnetic substance on the surface of siderite by adjusting slurry temperature,pH value,stirring rate and reaction time.No addition of any iron-containing reagent is required.The temperature of 60 ℃,NaOH concentration of 0.10 mol/L;stirring rate of 900 r/min and the reaction time of 10 min are the optimal conditions.The results show that the siderite recovery in magnetic separation increased from 26.9% to 88.8% after surface magnetization.Magnetization kinetic equation is expressed as 1 [1(e0.269)]1/3 = Kt.Activation energy for the magnetization reaction is 4.30 kJ/mol.VSM,SEM and XPS were used to characterize the siderite,and results show that the saturated magnetization(rs) of siderite increased from 0.652 to 2.569Am2 /kg,the magnetic hysteresis was detected with a coercive force of 0.976 A/m after magnetization;Fe2P3/2 electron binding energy changed which reflects the valence alteration in iron on the surface and the formation of ferromagnetic Fe3O4.展开更多
Electrocatalytic chemical oxidation(ECO)is an energy-efficient anodic reaction alternative to the oxygen evolution reaction(OER).ECO lowers the reaction potential and yields higher-value fine chemicals at the anode.Th...Electrocatalytic chemical oxidation(ECO)is an energy-efficient anodic reaction alternative to the oxygen evolution reaction(OER).ECO lowers the reaction potential and yields higher-value fine chemicals at the anode.The catalyst material plays a crucial role in influencing and determining ECO performance.Enhancing catalyst performance encompasses aspects such as activity,stability,selectivity and cost.Nickelbased electrocatalysts have garnered significant attention for their exceptional performance and widespread use in ECO applications.By modifying nickel-based electrocatalysts,the formation of NiOOH active centers can be encouraged.Strategies such as adjusting size and morphology,doping,introducing defects and constructing heterojunctions are advantageous for enhancing performance.Given the rapid advancements in related research fields,it is imperative to comprehend the mechanisms of nickel-based electrocatalysts in ECO and develop innovative catalysts.This article provides an overview of the modification strategies of nickel-based electrocatalysts,as well as their applications and mechanisms in ECO.展开更多
基金supported by a grant from E.I.du Pont de Nemours and Company to Rutgers University.Partial funding wasalso provided by the Natural Science Foundation of Guangdong Province(No.9351064101000001)Science and Technology Planning Project of Guangdong Province(No.2007A020100001-13)the Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Higher Education Institutions(China)
文摘The kinetics of aniline degradation by persulfate processes with iron(Ⅱ) activation at ambient temperature was investigated in this study.With iron(Ⅱ) as initiator,the oxidation reactions were found to follow a biphasic rate phenomenon:a rapid transformation followed by a slow but sustained oxidation process.In the first 30 s,the reaction mainly relies on the persulfate-Fe^(2+) reaction in which aniline is oxidized rapidly.After 30 s,the aniline was still oxidized but the rate of reaction tended to be slower and the rates were clearly linear-proportional.After the initial fast oxidation,the reactions appeared to follow a pseudo-first-order model.
文摘Anode material for lithium ion battery is prepared by chemical oxidation of natural graphite. After oxidation, the properties of natural graphite are modified, such as surface structure, the content of graphite phases, the number of micropores and its stability. thus the modified natural graphite can be used as anode material for commercial lithium ion battery. The reversible capacity is increased from 100 mAh/g to above 300 mAh/g, and its cycling properly is also satisfactory.
文摘Acidic black 10B dye wastewater was treated by chemical oxidation and adsorption of activated carbon fixed bed and all kinds of influential factors of removal CODcr were discussed. When the initial concentration of the dye was 150 mg/L, CODer was 432 mg/L and chrome was 2800 times, the appropriate conditions determined by the experiment were as follows: r(NaC10)--4.84 g/L, 25 min, pH=6, height of activated carbon fixed bed was 10 cm. Under these conditions, the decolorizing rate can come up to about 100% and total removed rate of CODer reached at 89.6%. Comparison of UV-Vis adsorption spectrums before and after treatment showed that decomposition effects of chemical oxidation and adsorption of activated carbon fixed bed on acidic black 10B dye wastewater were satisfactory.
基金This work was supported by the Natural Science Foundation of China(No.52100196)China Key Technologies R&D program(No.2021YFC3200700).
文摘Many studies have successfully built iron-mediatedmaterials to activate or catalyze Fentonlike reactions,with applications in water and wastewater treatment being investigated.However,the developed materials are rarely compared with each other regarding their performance of organic contaminant removal.In this review,the recent advances of Fentonlike processes in homogeneous and heterogeneous ways are summarized,especially the performance and mechanism of activators including ferrous iron,zero valent iron,iron oxides,iron-loaded carbon,zeolite,and metal organic framework materials.Also,this work mainly compares three O-O bond containing oxidants including hydrogen dioxide,persulfate,and percarbonate,which are environmental-friendly oxidants and feasible for in-situ chemical oxidation.The influence of reaction conditions,catalyst properties and benefits are analyzed and compared.In addition,the challenges and strategies of these oxidants in applications and the major mechanisms of the oxidation process have been discussed.This work can help understand the mechanistic insights of variable Fenton-like reactions,the role of emerging iron-based materials,and provide guidance for choosing appropriate technologies when facing real-world water and wastewater applications.
文摘Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for converting ethane to ethylene.In the current study MeO/LaCoO_(3)(MeO=Fe_(2)O_(3),NiO or Co_(2)O_(3))composite metal oxides were prepared via citrate gel and impregnation methods,and used as oxygen carriers for CL-ODH.X-ray diffraction results indicated that all oxygen carriers had a perovskite structure even after eight redox cycles.Under a reaction temperature of 650°C,a reaction pressure of 0.1 MPa,and a weight hourly space velocity(WHSV)of 7500 mL/(g·h),ethane conversion over Co_(2)O_(3)/LaCoO_(3) reached 100%and ethylene selectivity reached 60%,both of which were better than corresponding values attained over Fe_(2)O_(3)/LaCoO_(3) and NiO/LaCoO_(3).Ethylene selectivity remained stable for 80 cycles over Co_(2)O_(3)/LaCoO_(3),then decreased gradually after 80 cycles.X-ray photoelectron spectroscopy results and evaluation results indicated that lattice oxygen and O_(2)2-had a direct relationship with ethane conversion and ethylene selectivity.Co_(2)O_(3)/LaCoO_(3) exhibited a strong capacity to release and absorb oxygen,mainly due to interaction between Co_(2)O_(3) and LaCoO_(3).
文摘Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for ethylene preparation.Fe_(2)O_(3)/MgO oxygen carrier was prepared using the co-precipitation method.The influence of added NiO and its different loadings on Fe_(2)O_(3)/MgO were investigated.Then,a series of oxygen carriers were applied in the CL-ODH of the ethane cycle system.Brunauer-Emmett-Teller(BET),X-ray diffractometry(XRD),X-ray photoelection spectroscopy(XPS),and H2-temperature programmed reduction(TPR)were used to characterize the physicochemical properties of these oxygen carriers.It was confirmed that an interaction between NiO and Fe_(2)O_(3) occurred based on the XPS and H2-TPR results.Based on the CL-ODH activity performance tests conducted in a fixed-bed reactor,it was revealed that ethylene selectivity was significantly improved after NiO addition.Fe_(2)O_(3)-10%NiO/MgO showed the best activity performance with 93%ethane conversion and 50%ethylene selectivity at a reaction temperature of 650℃,atmospheric pressure,and space velocity of 7500 mL/(g·h).
文摘Fenton and ozone treatment was investigated at laboratory scale for the degradation of aqueous solutions of nitrobenzene (NB). Effects of reactants concentration (O3, H2O2, and Fe(Ⅱ)), temperature, and pH on NB degradation were monitored. Reaction kinetic of these processes was also assessed. A rapid reaction took place for Fenton process at higher initial concentration of H2O2, higher temperatures, and more acidic conditions (pH 3). Similarly, ozonation reaction exhibited rapid rates for higher ozone dose, higher temperatures, and more basic conditions (pH 11). Complete NB degradation in 65 min was achieved using Fenton process. The conditions of complete elimination of 100 mg/L of initial NB concentration, were 250 mg/L of H202 concentration, pH 3, and 10 mg/L of Fe(Ⅱ) concentration. Under these conditions, 55% organic carbon elimination was achieved. Total organic carbon mineralization was attained in 240 rain reaction time by Fenton process with 900 mg/L of H202 concentration, and 30 mg/L of Fe(Ⅱ) concentration. Fenton reaction showed a pseudo-first order kinetic; the reaction rate constant was ranged from 0.0226 to 0.0658 min^-1. Complete NB degradation was also achieved for an ozone dose of the order of 2.5 g/L. The ozonation was studied at different ozone doses, different initial pH (7-11) and at different temperatures (15-35℃). NB ozonation kinetic was represented by a bi-molecular kinetic model which was reduced to pseudo-first order kinetic. The pseudo-first order reaction rate constant was determined to increase at 20℃ from 0.004 to 0.020 min^-1 as the used ozone increased from 0.4 to 1.9 g/L.
基金the National Natural Science Foundation of China (40472026).
文摘Decoloration of acidic scarlet GR by pyrolusite is studied in this paper. The effects of pH in solution, dosage and granularity of pyrolusite, reaction temperature, and vibration speed on decoloration efficiency are discussed. According to experiment results, the decoloration efficiency may exceed 95% for 40 mg/L GR solution by pyrolusite, pH is most important among all factors which impact the decoloration of acidic scarlet GR. Dosage and granularity of pyrolusite, reaction temperature, and vibration speed have a little benitfit on decoloration. The high decoloration efficiency and low removal efficiency of COD as well as FT-IR spectra of products between pyrolusite and acidic scarlet GR indicate that acidic scarlet GR undergoes the redox reaction on the interface of mineral and its chromophore is oxidated and decolored, but it is not removed thoroughly by oxidation.
文摘Nicotinic acid was synthesized from 3 methylpyridine with potassium dichromate as the oxidant. The reaction conditions, the product separation and analysis were studied. The results indicate that under the certain reaction conditions, the yield of nicotinic acid can reach 67.4%, the conversion can reach 99.7% and the selectivity can be as high as 99.8%. The final product has a high purity.
基金supported by the National Natural Science Foundation of China (Nos. 51304047 and 51374066)the Ph.D. Programs Foundation of the Ministry of Education of China (No.20130042120040)
文摘An in situ characterization technique called electrochemical noise(ECN) was used to investigate the bioleaching of natural pyrite.ECN experiments were conducted in four active systems(sulfuric acid,ferric-ion,9k culture medium,and bioleaching solutions).The ECN data were analyzed in both the time and frequency domains.Spectral noise impedance spectra obtained from power spectral density(PSD)plots for different systems were compared.A reaction mechanism was also proposed on the basis of the experimental data analysis.The bioleaching system exhibits the lowest noise resistance of 0.101 MΩ The bioleaching of natural pyrite is considered to be a bio-battery reaction,which distinguishes it from chemical oxidation reactions in ferric-ion and culture-medium(9k) solutions.The corrosion of pyrite becomes more severe over time after the long-term testing of bioleaching.
文摘The goal of this topic is a synthesis of the main characteristics of iron in groundwater and the oxidation process used to remove it. Indeed, the kinetics of chemical oxidation of iron (II) was examined with reconstituted water (distilled water + iron sulphate) and proceeded to the application in the groundwater samples taken from <em><strong>South Pout</strong></em> (Senegal) precisely in the drilling <strong>PS2</strong>. The sources of iron are natural or anthropogenic. In Senegalese waters, its content is variable and sometimes exceeds the standards of potability. Despite the diversification of iron removal process, chemical oxidation is the most used solution in drinking water treatment plants in Senegalese rural areas. Applied oxidation processes such as aeration and chlorination, however, are insufficient to produce drinking water with an iron concentration in accordance with standards of potability.
基金supported partially by the National Natural Science Foundation of China (31201619)Profession Expert Group of Facility Cultivation and Engineering (CARS25-D-03)the Sci-Tech Development Project of Tai’an City, China (32606)
文摘Nitric oxide(NO),a bioactive signaling molecule,serves as an antioxidant and anti-stress agent under abiotic stress.A hydroponics experiment was conducted to investigate the effects of sodium nitroprusside(SNP),a NO donor,on tomato seedlings exposed to 50 μmol L-1CuCl 2.The results show that copper is primarily stored in the soluble cell sap fraction in the roots,especially after treatment with Cu+SNP treatment,which accounted for 66.2% of the total copper content.The copper concentration gradually decreased from the roots to the leaves.In the leaves,exogenous NO induces the storage of excess copper in the cell walls.Copper stress decreases the proportion of copper integrated with pectates and proteins,but exogenous NO remarkably reverses this trend.The alleviating effect of NO is blocked by hemoglobin.Thus,exogenous NO is likely involved in the regulation of the subcellular copper concentrations and its chemical forms under copper stress.Although exogenous NO inhibited the absorption and transport of excess copper to some extent,the copper accumulation in tomato seedlings significantly increased under copper stress.The use of exogenous NO to enhance copper tolerance in some plants is a promising method for copper remediation.
基金Foundation items: National Natural Science Foundations of China (No.10835004,No.10775031)Science and Technology Commission of Shanghai Municipality,China (No. 10XD1400100)
文摘The hydrophobic films of TixOy-CmHn. deposited from mixture gases of titanium isopropoxide (TTIP) and oxygen by plasma enhanced chemical vapor deposition (PECVD) were investigated. The films were investigated by scanning electron microscope ( SEM ), transmission electron microscope ( TEM ), Fourier transform infrared spectrometer ( FTIR), X-Ray diffraction ( XRD ), element analysis ( EA ), ultraviolet visible spectrometer ( UV-Vis), and water contact angle (WCA). The results reveal that the surface of the films is formed by mierosized papillaes aggregated by inorganic and organic phases of complex nanoparticles with size from 50 nm to 200 nm when the discharge power is increased from 40 W to 150 W. All fdms demonstrate the strong broad of Ti-O-Ti stretching vibration at 400 -800cm-1, -CH bending vibration at 1 388 cm -1, and broadening -OH stretching vibration at 3 000-3500 cm-1 With the increase of the discharge power, the asdeposited film changes from amorphous to crystallization. The WCA of the film can be as high as 160°, indicating the hydrophobicity. The films show a similar ultraviolet absorption property as the bulk TiO2 film. The composition of the composition of film deposited at 150 W can be formulated as Tio.302-C1.5H3. Therefore, the composition formula of this hydrophobic film could be expressed as TiO2-C5H10O4.7. It is believed that the complex micro/nano structures of TiO2 and C5H10O4.7 residues are responsible for the observed hydrophobicity and the ultraviolet absorption property of the film.
基金This work was financially supported by the Combined Project between the Educational Commission and the Economic Commission of Gansu Province (Nos. 99CX-04, 0310B-08)the Natural Science Foundation of Gansu Province (No. 3ZS041-A25-028)the Invention Project of Science & Technology (No. KJCXGC-01, NWNU), China.
文摘A PANI/TiO2 composite film deposited on the glass surface was successfully prepared using sol-gel dip-coating technique and chemical oxidation method. The film was characterized using XRD, AFM, and UV. The result showed that the TiO2 film consists of both cuboid-shaped and anatase-phased TiO2 nanoparticles. The average grain size of TiO2 in the film was approximately 20 nm. After coating with PANI, the particle was changed into irregular spherical-shaped and the size was increased up to approximately 35 nm in diameter. UV-Vis spectroscopy analysis indicated that the coating of TiO2 with PANI would result in an enhancement of photocatalytic efficiency and an extension of the photoresponse of TiO2. The band gap of the PANI/TiO2 film was 3.18 eV. The photocatalytic property of the film was evaluated by the degradation of rhodamine-B. It was found that 67.1% and 83.2% of rhodamine-B could be degraded under sunlight and UV irradiation within 120 min using the PANI/TiO2 composite t-tim as photocatalyst.
基金financially supported by National Natural Science Foundation of China (52174283)the Qingdao Science and Technology Benefiting People Special Project (20-3-4-8-nsh)+1 种基金the Fundamental Research Funds for the Central Universities(20CX02212A)the Development Fund of State Key Laboratory of Heavy Oil Processing and the Postgraduate Innovation Project of China University of Petroleum (YCX2020042)。
文摘The rational design of double active sites system is vital for constructing high-efficiency iron sulfides electrocatalysts towards hydrogen evolution reaction(HER) in alkaline media. However, it remains a challenge to controllably create the high-density interface of double sites for optimal synergistic effect.Herein, we reported a simple chemical oxidation-induced surface reconfiguration strategy to obtain the interface-rich Fe_(3)O_(4)-FeS nanoarray supported on iron foam(Fe_(3)O_(4)-FeS/IF) using FeS nanosheets as precursors. The abundant Fe_(3)O_(4)-FeS interfaces could improve the dispersion of active sites and facilitate the electron transfer, leading to enhanced hydrogen evolution efficiency. And meanwhile, by altering the oxidation temperature, the content of S and O could be effectively controlled, further achieving the ratio optimization of Fe_(3)O_(4)to FeS. Synchrotron-based X-ray absorption near-edge structure, X-ray photoelectron spectroscopy and ultraviolet photoemission spectroscopy consistently confirm the changes of electronic structure and d-band center of Fe_(3)O_(4)-FeS after chemical oxidation. Consequently, Fe_(3)O_(4)-FeS/IF exhibits excellent alkaline HER activity with a low overpotential of 120.8 mV to reach 20 mA cm^(-2),and remains stable ranging from 10, 20 to 50 mA cm^(-2) for each 20 h, respectively. Therefore, the facile and controllable chemical oxidation may be an effective strategy for designing high-density interfaces of transition metal-based sulfides towards alkaline HER.
基金The National Natural Science Foundation of China(No.41967043,52160003)the Natural Science Foundation of Gansu Province(No.20JR5RA461)+1 种基金the Key Project of China Railway Southwest Research Institute Co.,Ltd.(No.2018-KJ003-Z003-XB)the Industrial Support Program of the Higher Education of Gansu Province(No.2020C-40).
文摘A computational fluid dynamics(CFD)numerical simulation and field experiment were used to investigate optimal operating parameters of high-pressure jet grouting equipment and clarify the boundary law of the injection area in the remediation process.The response surface optimization design results show that the optimal injection pressure is 30 MPa,rotation speed is 23 r/min,commission speed is 30 cm/min,and the optimal injection diameter is 147.3 cm.Based on the CFD numerical simulation,the ratio of the injection core,turbulent zone,and seepage zone is approximately 1∶4∶2.The distribution law of jet core,turbulence zone and seepage zone at different cross-sections under 30 MPa operating conditions is as follows:The jet core radius is approximately 100 mm,the turbulence zone is mainly distributed at 100 to 500 mm,the seepage zone is mainly distributed at 500 to 700 mm,the seepage zone could be completed within 2 h,and the proportion of the three boundary zones in the injection zone is similar to that of the numerical simulation.This study provides theoretical parameters and practical reference for the remediation of deep pollution via in-situ chemical oxidation in the Loess Plateau soil environment.
文摘Nine kinds of reactive dye solutions: Reactive K -2RL, H-E2R, X-6B1Y, HE-4G, X-3B, K-2R, H - E7B, X -4RN and S - F3B were treated by using Fenton reagent. While the concentration of dye is 400 mg/L, the FeSO4 dosage 100 -180 mg/L, H2O2 240 -540 mg/L, that is the stoichiometric numbers of Fe2+ and H2O2 are between 1: 9 - 1:12, pH = 3, reaction tune In, temperature 25℃, the colority removal efficiency reach more than 95%, the COD removal efficiency 65% -85%, and the TOC removal efficiency 70.2%. By comparing UV-VIS absorption spectrum before and after treatment, it further shows that decomposition effect of Fenton reagent on these nine kinds of reactive dyes is satisfactory.
基金the Foundation of Science and Technology Department of Heibei Province (No. 05547003D-4)the Foundation of the Education Department of Hebei Province, China (No. 2005356).
文摘Lithium/polypyrrole (Li/PPy) batteries were fabricated using lithium sheet as cathode, PPy as anode, microporous membrane polypropylene/polyethylene/polypropylene (PP/PE/PP) composite as separator and LiPF6/ethylene carbonate-dimethyl carbonate-methyl ethyl carbonate (EC-DMC-EMC) as electrolyte. Polypyrrole was prepared by chemical polymerization. Certain fundamental electrochemical performances were investigated. Properties of the batteries were characterized and tested by SEM, galvanostatic charge/discharge tests, cyclic voltammetry (CV), and a.c. impedance spectroscopy. The influences of separator, morphology, and conductivity of PPy anode, cold-molded pressure, and electric current on the performances of the batteries were studied. Using PP/PE/PP membranes as separator, the battery showed good storage stability and cycling property. The conductivity of materials rather than morphology affected the behavior of the battery. The higher the conductivity, the better performances the cells had. Proper cold-molded pressure 20 MPa of the anode pellet would make the properties of the cells good and the fitted charge/discharge current was 0.1 mA. The cells showed excellent performance with 97%-100% coulombic efficiency. The highest discharge capacity of 95.2 mAh/g was obtained.
基金the financial support from the National Natural Science Foundation of China(No.51274256)
文摘Surface self-magnetization of siderite is achieved by generating ferromagnetic substance on the surface of siderite by adjusting slurry temperature,pH value,stirring rate and reaction time.No addition of any iron-containing reagent is required.The temperature of 60 ℃,NaOH concentration of 0.10 mol/L;stirring rate of 900 r/min and the reaction time of 10 min are the optimal conditions.The results show that the siderite recovery in magnetic separation increased from 26.9% to 88.8% after surface magnetization.Magnetization kinetic equation is expressed as 1 [1(e0.269)]1/3 = Kt.Activation energy for the magnetization reaction is 4.30 kJ/mol.VSM,SEM and XPS were used to characterize the siderite,and results show that the saturated magnetization(rs) of siderite increased from 0.652 to 2.569Am2 /kg,the magnetic hysteresis was detected with a coercive force of 0.976 A/m after magnetization;Fe2P3/2 electron binding energy changed which reflects the valence alteration in iron on the surface and the formation of ferromagnetic Fe3O4.
基金supported by the National Natural Science Foundation of China(Nos.52072152 and 51802126)the Jiangsu University Jinshan Professor Fund,the Jiangsu Specially-Appointed Professor Fund,Open Fund from Guangxi Key Laboratory of Electrochemical Energy Materials,Zhenjiang“Jinshan Talents”Project 2021,China PostDoctoral Science Foundation(No.2022M721372)+2 种基金“Doctor of Entrepreneurship and Innovation”in Jiangsu Province(No.JSSCBS20221197)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Nos.KYCX22_3645 and KYCX24_3964)Student Research Project of Jiangsu University(No.23A586).
文摘Electrocatalytic chemical oxidation(ECO)is an energy-efficient anodic reaction alternative to the oxygen evolution reaction(OER).ECO lowers the reaction potential and yields higher-value fine chemicals at the anode.The catalyst material plays a crucial role in influencing and determining ECO performance.Enhancing catalyst performance encompasses aspects such as activity,stability,selectivity and cost.Nickelbased electrocatalysts have garnered significant attention for their exceptional performance and widespread use in ECO applications.By modifying nickel-based electrocatalysts,the formation of NiOOH active centers can be encouraged.Strategies such as adjusting size and morphology,doping,introducing defects and constructing heterojunctions are advantageous for enhancing performance.Given the rapid advancements in related research fields,it is imperative to comprehend the mechanisms of nickel-based electrocatalysts in ECO and develop innovative catalysts.This article provides an overview of the modification strategies of nickel-based electrocatalysts,as well as their applications and mechanisms in ECO.