期刊文献+
共找到2,870篇文章
< 1 2 144 >
每页显示 20 50 100
Optimizing the sulfur-resistance and activity of perovskite oxygen carrier for chemical looping dry reforming of methane
1
作者 Yuelun Li Dong Tian +6 位作者 Lei jiang Huicong Zuo LiNan Huang Mingyi Chen Jianchun Zuo Hua Wang Kongzhai Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期259-271,共13页
Perovskite oxides has been attracted much attention as high-performance oxygen carriers for chemical looping reforming of methane,but they are easily inactivated by the presence of trace H_(2)S.Here,we propose to modu... Perovskite oxides has been attracted much attention as high-performance oxygen carriers for chemical looping reforming of methane,but they are easily inactivated by the presence of trace H_(2)S.Here,we propose to modulate both the activity and resistance to sulfur poisoning by dual substitution of Mo and Ni ions with the Fe-sites of LaFeO_(3)perovskite.It is found that partial substitution of Ni for Fe substantially improves the activity of LaFeO_(3)perovskite,while Ni particles prefer to grow and react with H_(2)S during the long-term successive redox process,resulting in the deactivation of oxygen carriers.With the presence of Mo in LaNi_(0.05)Fe_(0.95)O_(3−σ)perovskite,H_(2)S preferentially reacts with Mo to generate MoS_(2),and then the CO_(2)oxidation can regenerate Mo via removing sulfur.In addition,Mo can inhibit the accumulation and growth of Ni,which helps to improve the redox stability of oxygen carriers.The LaNi_(0.05)Mo_(0.07)Fe_(0.88)O_(3−σ)oxygen carrier exhibits stable and excellent performance,with the CH_(4)conversion higher than 90%during the 50 redox cycles in the presence of 50 ppm H_(2)S at 800℃.This work highlights a synergistic effect in the perovskite oxides induced by dual substitution of different cations for the development of high-performance oxygen carriers with excellent sulfur tolerance. 展开更多
关键词 Perovskite oxygen carriers chemical looping reforming Sulfur-resistance Dual substitution SYNGAS
下载PDF
Ethane Chemical Looping Oxidative Dehydrogenation to Ethylene over Co_(2)O_(3)(Fe_(2)O_(3),NiO)/LaCoO_(3) Oxygen Carriers
2
作者 Liang Hao Meng Jinhong +1 位作者 Sun Jie Wei Dongkai 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第3期33-41,共9页
Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for converting ethane to ethylene.In the current study MeO/LaCoO_(3)(MeO=Fe_(2)O_(3),NiO or Co_(2)O_(3))composite metal oxides w... Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for converting ethane to ethylene.In the current study MeO/LaCoO_(3)(MeO=Fe_(2)O_(3),NiO or Co_(2)O_(3))composite metal oxides were prepared via citrate gel and impregnation methods,and used as oxygen carriers for CL-ODH.X-ray diffraction results indicated that all oxygen carriers had a perovskite structure even after eight redox cycles.Under a reaction temperature of 650°C,a reaction pressure of 0.1 MPa,and a weight hourly space velocity(WHSV)of 7500 mL/(g·h),ethane conversion over Co_(2)O_(3)/LaCoO_(3) reached 100%and ethylene selectivity reached 60%,both of which were better than corresponding values attained over Fe_(2)O_(3)/LaCoO_(3) and NiO/LaCoO_(3).Ethylene selectivity remained stable for 80 cycles over Co_(2)O_(3)/LaCoO_(3),then decreased gradually after 80 cycles.X-ray photoelectron spectroscopy results and evaluation results indicated that lattice oxygen and O_(2)2-had a direct relationship with ethane conversion and ethylene selectivity.Co_(2)O_(3)/LaCoO_(3) exhibited a strong capacity to release and absorb oxygen,mainly due to interaction between Co_(2)O_(3) and LaCoO_(3). 展开更多
关键词 chemical looping oxidative dehydrogenation ETHANE ETHYLENE oxygen carrier PEROVSKITE
下载PDF
CO_(2)capture costs of chemical looping combustion of biomass:A comparison of natural and synthetic oxygen carrier
3
作者 Benjamin Fleiß Juraj Priscak +3 位作者 Martin Hammerschmid Josef Fuchs Stefan Müller Hermann Hofbauer 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期296-310,共15页
Chemical looping combustion has the potential to be an efficient and low-cost technology capable of contributing to the reduction of the atmospheric concentration of CO_(2) in order to reach the 1.5/2°C goal and ... Chemical looping combustion has the potential to be an efficient and low-cost technology capable of contributing to the reduction of the atmospheric concentration of CO_(2) in order to reach the 1.5/2°C goal and mitigate climate change.In this process,a metal oxide is used as oxygen carrier in a dual fluidized bed to generate clean CO_(2) via combustion of biomass.Most commonly,natural ores or synthetic materials are used as oxygen carrier whereas both must meet special requirements for the conversion of solid fuels.Synthetic oxygen carriers are characterized by higher reactivity at the expense of higher costs versus the lower-cost natural ores.To determine the viability of both possibilities,a techno-economic comparison of a synthetic material based on manganese,iron,and copper to the natural ore ilmenite was conducted.The synthetic oxygen carrier was characterized and tested in a pilot plant,where high combustion efficiencies up to 98.4%and carbon capture rates up to 98.5%were reached.The techno-economic assessment resulted in CO_(2) capture costs of 75 and 40€/tCO_(2) for the synthetic and natural ore route respectively,whereas a sensitivity analysis showed the high impact of production costs and attrition rates of the synthetic material.The synthetic oxygen carrier could break even with the natural ore in case of lower production costs and attrition rates,which could be reached by adapting the production process and recycling material.By comparison to state-of-the-art technologies,it is demonstrated that both routes are viable and the capture cost of CO_(2) could be reduced by implementing the chemical looping combustion technology. 展开更多
关键词 chemical looping combustion BECCS Techno-economic assessment CO_(2)capture costs oxygen carrier development Synthetic materials ILMENITE
下载PDF
Advancements in biomass gasification research utilizing iron-based oxygen carriers in chemical looping:A review
4
作者 Yonghong Niu Zhengyang Chi Ming Li 《Materials Reports(Energy)》 EI 2024年第3期35-48,共14页
Biomass,recognized as renewable green coal,is pivotal for energy conservation,emission reduction,and dualcarbon objectives.Chemical looping gasification,an innovative technology,aims to enhance biomass utilization eff... Biomass,recognized as renewable green coal,is pivotal for energy conservation,emission reduction,and dualcarbon objectives.Chemical looping gasification,an innovative technology,aims to enhance biomass utilization efficiency.Using metal oxides as oxygen carriers regulates the oxygen-to-fuel ratio to optimize synthesis product yields.This review examines various oxygen carriers and their roles in chemical looping biomass gasification,including natural iron ore types,industrial by-products,cerium oxide-based carriers,and core-shell structures.The catalytic,kinetic,and phase transfer properties of iron-based oxygen carriers are analyzed,and their catalytic cracking capabilities are explored.Molecular interactions are elucidated and system performance is optimized by providing insights into chemical looping reaction mechanisms and strategies to improve carrier efficiency,along with discussing advanced techniques such as density functional theory(DFT)and reactive force field(ReaxFF)molecular dynamics(MD).This paper serves as a roadmap for advancing chemical looping gasification towards sustainable energy goals. 展开更多
关键词 chemical looping gasification Iron based oxygen carrier Preparation of oxygen carrier system
下载PDF
Effect of Molybdenum Doping on Oxygen Permeation Properties and Chemical Stability of SrCo0.8Fe0.2O3-δ
5
作者 宋春林 方曙民 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第4期445-449,J0002,共6页
The phase composition, microstructure, thermal expansion coefficients, oxygen permeation properties and chemical stability of SrCo0.8Fe0.2O3-δ (SCFM) were investigated and compared with those of SrCo0.8Fe0.2O3-δ(... The phase composition, microstructure, thermal expansion coefficients, oxygen permeation properties and chemical stability of SrCo0.8Fe0.2O3-δ (SCFM) were investigated and compared with those of SrCo0.8Fe0.2O3-δ(SCF). Single phase SCFM was successfully prepared by a combined EDTA-citric method. SCFM shows a lower thermal expansion coefficient (24× 10^-6-29× 10^-6/K) than SCF between 500 and 1050 ℃, indicating a more stable structure. SCFM shows a high oxygen permeation flux, although the oxygen flux of SCFM decreases slightly because of Mo dopant. Furthermore, it was demonstrated that the doping of Mo in SCF can prevent the order-disorder transition and improves the chemical stability to CO2. 展开更多
关键词 oxygen permeation SrCo0.8Fe0.2O3-δ chemical stability MOLYBDENUM
下载PDF
Application of Fe_2O_3/Al_2O_3 Composite Particles as Oxygen Carrier of Chemical Looping Combustion 被引量:11
6
作者 Fang He Hua Wang Yongnian Dai 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2007年第2期155-161,共7页
Chemical looping combustion (CLC) of carbonaceous compounds has been proposed, in the past decade, as an efficient method for CO2 capture without cost of extra energy penalties. The technique involves the use of a m... Chemical looping combustion (CLC) of carbonaceous compounds has been proposed, in the past decade, as an efficient method for CO2 capture without cost of extra energy penalties. The technique involves the use of a metal oxide as an oxygen carrier that transfers oxygen from combustion air to fuels. The combustion is carried out in a two-step process: in the fuel reactor, the fuel is oxidized by a metal oxide, and in the air reactor, the reduced metal is oxidized back to the original phase. The use of iron oxide as an oxygen carrier has been investigated in this article. Particles composed of 80 wt% Fe2O3, together with Al2O3 as binder, have been prepared by impregnation methods. X-ray diffraction (XRD) analysis reveals that Fe2O3 does not interact with the Al2O3 binder after multi-cycles. The reactivity of the oxygen carrier particles has been studied in twenty-cycle reduction-oxidation tests in a thermal gravimetrical analysis (TGA) reactor. The components in the outlet gas have been analyzed. It has been observed that about 85% of CH4 converted to CO2 and H2O during most of the reduction periods. The oxygen carrier has kept quite a high reactivity in the twenty-cycle reactions. In the first twenty reaction cycles, the reaction rates became slightly higher with the number of cyclic reactions increasing, which was confirmed by the scanning electron microscopy (SEM) test results. The SEM analysis revealed that the pore size inside the particle had been enlarged by the thermal stress during the reaction, which was favorable for diffusion of the gaseous reactants into the particles. The experimental results suggested that the Fe2O3/Al2O3 oxygen carrier was a promising candidate for a CLC system. 展开更多
关键词 chemical looping combustion iron oxide oxygen carrier CO2 capture
下载PDF
Simultaneous Determination of Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD5) in Wastewater by Near-Infrared Spectrometry 被引量:6
7
作者 Qiong YANG Zhenyao LIU Jidong YANG 《Journal of Water Resource and Protection》 2009年第4期286-289,共4页
To rapidly determine the pollution extent of wastewater, the calibration models were established for deter-mination of Chemical Oxygen Demand and Biological Oxygen Demand in wastewater by partial least squares and nea... To rapidly determine the pollution extent of wastewater, the calibration models were established for deter-mination of Chemical Oxygen Demand and Biological Oxygen Demand in wastewater by partial least squares and near infrared spectrometry of 120 samples. Spectral data preprocessing and outliers’ diagnosis were also discussed. Correlation coefficients of the models were 0.9542 and 0.9652, and the root mean square error of prediction (RMSEP) were 25.24 mg?L-1 and 12.13 mg?L-1 in the predicted range of 28.40~528.0 mg?L-1 and 16.0~305.2 mg?L-1 for Chemical Oxygen Demand and Biological Oxygen Demand, respectively. By statistical significance test, the results of determination were compared with those of stan-dard methods with no significant difference at 0.05 level. The method has been applied to simultaneous de-termination of Chemical Oxygen Demand and Biological Oxygen Demand in wastewater with satisfactory results. 展开更多
关键词 Near-Infrared SPECTROMETRY WASTEWATER BIOLOGICAL oxygen DEMAND chemical oxygen DEMAND
下载PDF
Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes 被引量:7
8
作者 ZAYAS Pérez Teresa GEISSLER Gunther HERNANDEZ Fernando 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第3期300-305,共6页
The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal o... The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H202, UV/O3 and UV/H2O2/O3 processes was determined under acidic conditions. For each of these processes, different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater. Coffee wastewater is characterized by a high chemical oxygen demand (COD) and low total suspended solids. The outcomes of coffee wastewater treatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD, color, and turbidity. It was found that a reduction in COD of 67% could be realized when the coffee wastewater was treated by chemical coagulation-flocculation with lime and coagulant T-1. When coffee wastewater was treated by coagulation-flocculation in combination with UV/H2O2, a COD reduction of 86% was achieved, although only after prolonged UV irradiation. Of the three advanced oxidation processes considered, UV/H2O2, UV/O3 and UV/H2O2/O3, we found that the treatment with UV/H2O2/O3 was the most effective, with an efficiency of color, turbidity and further COD removal of 87%, when applied to the flocculated coffee wastewater. 展开更多
关键词 advanced oxidation processes coagulation-flocculation: coffee wastewater chemical oxygen demand (COD)
下载PDF
Relationship between Oxygen Chemical Potential and Steel Cleanliness 被引量:4
9
作者 Mansour Soltanieh Yousef Payandeh 《Journal of Iron and Steel Research International》 SCIE CAS CSCD 2005年第5期28-33,62,共7页
To investigate inclusion formation in each step during steel making process, several samples were taken in different steps of the production of steel at Mobarakeh Steel Co of Esfahan to measure the oxygen chemical pot... To investigate inclusion formation in each step during steel making process, several samples were taken in different steps of the production of steel at Mobarakeh Steel Co of Esfahan to measure the oxygen chemical potential of the molten steel in each stage. The chemical compositions of the inclusions in samples were investigated by scanning electron microscope. The chemical composition of the slag was analyzed. With the use of thermodnamic calculations and chemical analysis of the melt, at the working temperature, the relationship between dissolved oxygen and other elements were determined. Finally, it was found that there is a close relationship between inclusions formed in each step with the oxygen partial pressure. 展开更多
关键词 INCLUSION steel cleanliness oxygen chemical potential
下载PDF
Different oxidation routes for lattice oxygen recovery of double-perovskite type oxides LaSrFeCoO6 as oxygen carriers for chemical looping steam methane reforming 被引量:3
10
作者 Kun Zhao Yang Shen +5 位作者 Zhen Huang Fang He Guoqiang Wei Anqing Zheng Haibin Li Zengli Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第3期501-509,共9页
Double-perovskite type oxide LaSrFeCoO(LSFCO) was used as oxygen carrier for chemical looping steam methane reforming(CL-SMR) due to its unique structure and reactivity. Two different oxidation routes,steam-oxidat... Double-perovskite type oxide LaSrFeCoO(LSFCO) was used as oxygen carrier for chemical looping steam methane reforming(CL-SMR) due to its unique structure and reactivity. Two different oxidation routes,steam-oxidation and steam-air-stepwise-oxidation, were applied to investigate the recovery behaviors of the lattice oxygen in the oxygen carrier. The characterizations of the oxide were determined by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), hydrogen temperature-programmed reduction(H-TPR) and scanning electron microscopy(SEM). The fresh sample LSFCO exhibits a monocrystalline perovskite structure with cubic symmetry and high crystallinity, except for a little impurity phase due to the antisite defect of Fe/Co disorder. The deconvolution distribution of XPS patterns indicated that Co,and Fe are predominantly in an oxidized state(Feand Fe) and(Coand Co), while O 1s exists at three species of lattice oxygen, chemisorbed oxygen and physical adsorbed oxygen. The double perovskite structure and chemical composition recover to the original state after the steam and air oxidation, while the Co ion cannot incorporate into the double perovskite structure and thus form the CoO just via individual steam oxidation. In comparison to the two different oxidation routes, the sample obtained by steam-oxidation exhibits even higher CHconversion, CO and Hselectivity and stronger hydrogen generation capacity. 展开更多
关键词 DOUBLE-PEROVSKITE chemical looping Lattice oxygen Oxidizing agent Redox
下载PDF
Effect of Gasifying Medium on the Coal Chemical Looping Gasification with CaSO_4 as Oxygen Carrier 被引量:2
11
作者 刘永卓 贾伟华 +1 位作者 郭庆杰 Hojung Ryu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第Z1期1208-1214,共7页
The chemical looping gasification uses an oxygen carrier for solid fuel gasification by supplying insufficient lattice oxygen. The effect of gasifying medium on the coal chemical looping gasification with Ca SO4 as ox... The chemical looping gasification uses an oxygen carrier for solid fuel gasification by supplying insufficient lattice oxygen. The effect of gasifying medium on the coal chemical looping gasification with Ca SO4 as oxygen carrier is investigated in this paper. The thermodynamical analysis indicates that the addition of steam and CO2 into the system can reduce the reaction temperature, at which the concentration of syngas reaches its maximum value.Experimental result in thermogravimetric analyzer and a fixed-bed reactor shows that the mixture sample goes through three stages, drying stage, pyrolysis stage and chemical looping gasification stage, with the temperature for three different gaseous media. The peak fitting and isoconversional methods are used to determine the reaction mechanism of the complex reactions in the chemical looping gasification process. It demonstrates that the gasifying medium(steam or CO2) boosts the chemical looping process by reducing the activation energy in the overall reaction and gasification reactions of coal char. However, the mechanism using steam as the gasifying medium differs from that using CO2. With steam as the gasifying medium, parallel reactions occur in the beginning stage, followed by a limiting stage shifting from a kinetic to a diffusion regime. It is opposite to the reaction mechanism with CO2 as the gasifying medium. 展开更多
关键词 chemical LOOPING GASIFICATION Ca SO4 oxygen CARRIER Reaction mechanism SYNGAS generation
下载PDF
Chemical looping catalytic gasification of biomass over active LaNixFe1-xO_(3)perovskites as functional oxygen carriers 被引量:4
12
作者 Jingchun Yan Weidong Liu +3 位作者 Rong Sun Shouxi Jiang Shen Wang Laihong Shen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第8期146-156,共11页
Oxygen carriers(OCs)with perovskite structure are attracting increasing interests due to their redox tunability by introducing various dopants in the structure.In this study,LaNixFe1-xO3(x=0,0.1,0.3,0.5,0.7,1.0)perovs... Oxygen carriers(OCs)with perovskite structure are attracting increasing interests due to their redox tunability by introducing various dopants in the structure.In this study,LaNixFe1-xO3(x=0,0.1,0.3,0.5,0.7,1.0)perovskite OCs have been prepared by a citric acid–nitrate sol–gel method,characterized by means of X-ray diffraction(XRD)analysis and tested for algae chemical looping gasification in a fixed bed reactor.The effects of perovskite types,OC/biomass mass ratio(O/B),gasification temperature and water injection rate on the gasification performance were investigated.Lower Ni-doped(0≤x≤0.5)perovskites crystalized in the rhombohedra system which was isostructural with LaNiO3,while those with composition 0.5≤x≤1 crystalized in the orthorhombic system.Despite the high reactivity for LaNiO_(3),LaNi_(0.5)Fe_(0.5)O_(3)(LN5F5)was found to be more stable at a high temperature and give almost as good results as LaNiO_(3)in the formation of syngas.The relatively higher syngas yield of 0.833 m^(3)·kg^(-1) biomass was obtained under the O/B of 0.4,water injection rate of 0.3 ml·min^(-1) and gasification temperature at 850C.Continuous high yield of syngas was achieved during the first 5 redox cycles,while a slight decrease in the reactivity for LN5F5 after 5 cycles was observed due to the adhesion of small grains occurring on the surface of OCs.However,an obvious improvement in the gasification performance was attained for LN5F5 compared to raw biomass direct gasification,indicating that LN5F5 is a promising functional OC for chemical looping catalytic gasification of biomass. 展开更多
关键词 BIOMASS chemical looping gasification oxygen carrier La-Ni-Fe perovskite CATALYSIS
下载PDF
Environmental capacity of chemical oxygen demand in the Bohai Sea: modeling and calculation 被引量:5
13
作者 赵喜喜 王修林 +2 位作者 石晓勇 李克强 丁东生 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2011年第1期46-52,共7页
A three-dimensional advection-diffusion model coupled with the degradation process is established for describing the transport of chemical oxygen demand (COD). Comparison of the simulated distribution of COD at the su... A three-dimensional advection-diffusion model coupled with the degradation process is established for describing the transport of chemical oxygen demand (COD). Comparison of the simulated distribution of COD at the surface in the Bohai Sea in August, 2001 with field observations, shows that the model simulates the dataset reasonably well. The Laizhou Bay, Bohai Bay, and Liaodong Bay were contaminated heavily near shore. Based on the optimal discharge flux method, the Environmental Capacity (EC) and allocated capacities of COD in the Bohai Sea are calculated. For seawater of Grades I to IV of the Chinese National Standard, the ECs of COD in the Bohai Sea were 77×104 t/a, 116×104 t/a, 154×104 t/a and 193×104 t/a, respectively. The Huanghe (Yellow) River pollutant discharge accounted for the largest percentage of COD at 14.3%, followed by that of from the Liugu River (11.5%), and other nine local rivers below 10%. The COD level in 2005 was worse than that of Grade II seawater and was beyond the environmental capacity. In average, 35% COD reduction is called to meet the standard of Grade I seawater. 展开更多
关键词 Bohai Sea environmental capacity (EC) chemical oxygen demand (COD) degradation process
下载PDF
Chemical looping reforming of the micromolecular component from biomass pyrolysis via Fe_(2)O_(3)@SBA-16
14
作者 Yunchang Li Bo Zhang +3 位作者 Xiantan Yang Bolun Yang Shengyong Zhang Zhiqiang Wu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期120-134,共15页
To solve the problems of low gasification efficiency and high tar content caused by solid–solid contact between biomass and oxygen carrier in traditional biomass chemical looping gasification process.The decoupling s... To solve the problems of low gasification efficiency and high tar content caused by solid–solid contact between biomass and oxygen carrier in traditional biomass chemical looping gasification process.The decoupling strategy was adopted to decouple the biomass gasification process,and the composite oxygen carrier was prepared by embedding Fe_(2)O_(3) in molecular sieve SBA-16 for the chemical looping reforming process of pyrolysis micromolecular model compound methane,which was expected to realize the directional reforming of pyrolysis volatiles to prepare hydrogen-rich syngas.Thermodynamic analysis of the reaction system was carried out based on the Gibbs free energy minimization method,and the reforming performance was evaluated by a fixed bed reactor,and the kinetic parameters were solved based on the gas–solid reaction model.Thermodynamic analysis verified the feasibility of the reaction and provided theoretical guidance for experimental design.The experimental results showed that the reaction performance of Fe_(2)O_(3)@SBA-16 was compared with that of pure Fe_(2)O_(3) and Fe_(2)O_(3)@SBA-15,and the syngas yield was increased by 55.3%and 20.7%respectively,and it had good cycle stability.Kinetic analysis showed that the kinetic model changed from three-dimensional diffusion to first-order reaction with the increase of temperature.The activation energy was 192.79 kJ/mol by fitting.This paper provides basic data for the directional preparation of hydrogen-rich syngas from biomass and the design of oxygen carriers for pyrolysis of all-component chemical looping reforming. 展开更多
关键词 Biomass pyrolysis METHANE chemical looping reforming oxygen carrier Kinetic analysis
下载PDF
Layered Mg-Al spinel supported Ce-Fe-Zr-O oxygen carriers for chemical looping reforming 被引量:3
15
作者 Jiangyong Yuan Yannan Zhao +4 位作者 Haiwen Xu Chunqiang Lu Kun Yang Xing Zhu Kongzhai Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第10期2668-2676,共9页
A series of layered Mg-Al spinel supported Ce-Fe-Zr-O oxygen carriers were prepared for co-production of syngas and pure hydrogen via chemical looping steam reforming(CLSR).The presence of magnesium-aluminum layered d... A series of layered Mg-Al spinel supported Ce-Fe-Zr-O oxygen carriers were prepared for co-production of syngas and pure hydrogen via chemical looping steam reforming(CLSR).The presence of magnesium-aluminum layered double oxides(Mg Al-LDO)significantly increases the specific surface area of the mixed oxides,reduces the particle size of CeO2-based solid solution and promotes the dispersion of free Fe2O3.When reacting with methane,Mg Al-LDO supported oxygen carrier shows much lower temperature for methane oxidation than the pure CeFe-Zr-O sample,indicating enhanced low-temperature reactivity.Among different Ce-Fe-Zr-O(x)/Mg Al-LDO samples,the Ce-Fe-Zr-O(40 wt%)/Mg Al-LDO sample shows the best performance for the selective oxidation of methane to syngas and the H2 production by water splitting.After a long period of high temperature redox experiment,the Ce-Fe-Zr-O(40 wt%)/Mg Al-LDO oxygen carrier still shows high activity for syngas generation.The comparison on the morphology of the fresh and cycled oxygen carriers indicates that the Mg-Al spinel support still forms a stable skeleton structure with high dispersion of active components on the surface after the long-term cycling,which contributes to excellent redox stability of the Ce-Fe-Zr-O(40 wt%)/Mg Al-LDO oxygen carrier. 展开更多
关键词 chemical looping reforming SYNGAS Hydrogen Ce-Fe-Zr-O(x)/MgAl-LDO oxygen carrier
下载PDF
Chemical looping gasification of sewage sludge using copper slag modified by NiO as an oxygen carrier 被引量:3
16
作者 Nanhang Dong Ruiqiang Huo +5 位作者 Ming Liu Lisheng Deng Zhengbing Deng Guozhang Chang Zhen Huang Hongyu Huang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第1期335-343,共9页
Chemical looping gasification(CLG) provides a novel approach to dispose the sewage sludge.In order to improve the reactivity of the calcined copper slag,NiO modification is considered as one of the good solutions.The ... Chemical looping gasification(CLG) provides a novel approach to dispose the sewage sludge.In order to improve the reactivity of the calcined copper slag,NiO modification is considered as one of the good solutions.The copper slag calcined at 1100℃ doped with 20 wt% NiO(Ni20-CS) was used as an oxygen carrier(OC) in sludge CLG in the work.The modification of NiO can evidently enhance the reactivity of copper slag to promote the sludge conversion,especially for sludge char conversion.The carbon conversion and valid gas yield(V_(g)) increase from 67.02% and 0.23 m^(3)·kg^(-1) using the original OC to 78.34% and 0.29 m^(3)·kg^(-1) using the Ni20-CS OC, respectively.The increase of equivalent coefficient(Ω) facilitates the sludge conversion and a suitable Ω value is determined at 0.47 to obtain the highest valid gas yield(0.29 m^(3)·kg^(-1)).A suitable steam content is assigned at 27.22% to obtain the maximum carbon conversion of 87.09%,where an acceptable LHV of 12.63 MJ·m^(-3) and Vg of 0.39 m^(3)·kg^(-1)are obtained.Although the reactivity of Ni20-CS OC gradually decreases with the increase in cycle numbers because of the generation of NiFe_(2) O_(4-δ) species,the deposition of sludge ash containing many metallic elements is beneficial to the sludge conversion.As a result,the carbon conversion shows a slight uptrend with the increase of cycle numbers in sludge CLG.It indicates that the Ni20-CS sample is a good OC for sludge CLG. 展开更多
关键词 chemical looping gasification(CLG) Copper slag NIO SLUDGE oxygen carrier(OC)
下载PDF
Spatial distribution and diurnal variation of chemical oxygen demand at the beginning of the rainy season in the Changjiang (Yangtze) River Estuary 被引量:3
17
作者 高学鲁 宋金明 +1 位作者 李宁 李学刚 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2007年第3期254-260,共7页
A field observation was carried out in the Changjiang (Yangtze) River Estuary from May 19 to 26, 2003. A total of 29 stations, including 2 anchored stations, were occupied through almost the whole salinity gradient. B... A field observation was carried out in the Changjiang (Yangtze) River Estuary from May 19 to 26, 2003. A total of 29 stations, including 2 anchored stations, were occupied through almost the whole salinity gradient. Based on the observation data, biogeochemistry of chemical oxygen demand (COD) was examined. Spatial distribution pattern of COD shows that it decreased downstream. The COD concentration varied generally within a narrow range of 1.24–1.60 mg/L in the zone around the river mouth, beyond which it decreased rapidly to 0.20 mg/L. In the mixed water zone, the fluctuation in COD was smaller at 2 m above the bottom layer than at the surface layer in 48 h. In the seawater zone, the 48-h fluctuation at the surface was the largest, followed by that of 5 m below the surface and 2 m above the bottom layers in a range of from 2.50 to 0.55 mg/L. Freshwater discharge was the dominant source of COD in the estuary. The average COD beyond the river mouth was 2.7 mg/L, which accorded with the Chinese seawater quality Grade I. Relationships between dissolved oxygen and biogeochemical parameters such as suspended particulate matter, dissolved organic matter and chlorophyll-a were also discussed. 展开更多
关键词 spatial distribution diurnal variation chemical oxygen demand the Changjiang (Yangtze) River Estuary
下载PDF
Atomic Level Dispersed Metal–Nitrogen–Carbon Catalyst toward Oxygen Reduction Reaction: Synthesis Strategies and Chemical Environmental Regulation 被引量:3
18
作者 Hengbo Yin Huicong Xia +3 位作者 Shuyan Zhao Kexie Li Jianan Zhang Shichun Mu 《Energy & Environmental Materials》 SCIE CSCD 2021年第1期5-18,共14页
For development and application of proton exchange membrane fuel cell(PEMFC) energy transformation technology, the cost performance must be elevated for the catalyst. At present, compared with noble metal-based cataly... For development and application of proton exchange membrane fuel cell(PEMFC) energy transformation technology, the cost performance must be elevated for the catalyst. At present, compared with noble metal-based catalysts, such as Pt-based catalysts, atomically dispersed metal–nitrogen–carbon(M–N–C) catalysts are popularity and show great potential in maximizing active site density, high atom utilization and high activity,making them the first choice to replace Pt-based catalysts. In the preparation of atomically dispersed metal–nitrogen–carbon catalyst, it is difficult to ensure that all active sites are uniformly dispersed, and the structure system of the active sites is not optimal. Based on this, we focus on various approaches for preparing M–N–C catalysts that are conducive to atomic dispersion, and the influence of the chemical environmental regulation of atoms on the catalytic sites in different catalysts. Therefore, we discuss the chemical environmental regulation of the catalytic sites by bimetals, atom clusters, and heteroatoms(B, S, and P). The active sites of M–N–C catalysts are explored in depth from the synthesis and characterization, reaction mechanisms, and density functional theory(DFT)calculations. Finally, the existing problems and development prospects of the current atomic dispersion M–N–C catalyst are proposed in detail. 展开更多
关键词 atomic-level catalyst chemical environmental effects metal-nitrogen-carbon oxygen reduction reaction synthesis strategy
下载PDF
Reactivity study and kinetic evaluation of CuO-based oxygen carriers modified by three different ores in chemical looping with oxygen uncoupling(CLOU)process 被引量:3
19
作者 Cao Kuang Shuzhong Wang +1 位作者 Ming Luo Jun Zhao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第9期54-63,共10页
In the chemical looping with oxygen uncoupling(CLOU)process,CuO is a promising material due to the high oxygen carrier capacity and exothermic reaction in fuel reactor but limited by the low melting point.The combusti... In the chemical looping with oxygen uncoupling(CLOU)process,CuO is a promising material due to the high oxygen carrier capacity and exothermic reaction in fuel reactor but limited by the low melting point.The combustion rate of carbon is faster than the decoupling rate of oxygen carrier(OC).Hence,high temperature tolerance and rapid oxygen release rate of CuO modified by three different ores were investigated in this study.The kinetics analysis of oxygen decoupling with Cu-based oxygen carriers was also evaluated.Results showed that CuO modified by chrysolite had faster oxygen release rate than that of CuO.Limestone showed obvious positive effect on the oxidization process.The selected OCs could keep stable in at least 20 cycles,for about 1200 min.Shrinking core model(SCM)fitted well for the decoupling process in the temperature range of 1123-1223 K.Reduction rate kinetic information may aid in the development of chemical looping with oxygen uncoupling(CLOU)technologies during reactor design and process modeling.Ternary doped copper oxide with chrysolite and limestone could improve the reactivity of CuO in decoupling and coupling process and also improve the high temperature tolerance. 展开更多
关键词 Reaction kinetics chemical looping with oxygen uncoupling(CLOU) Sintering Natural ore CO_(2)capture
下载PDF
NiO-Doped Fe_(2)O_(3)/MgO Properties for the Chemical Looping Oxidative Dehydrogenation of Ethane
20
作者 Liang Hao Chen Junjie +1 位作者 Sun Jie Sun Hui 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期27-33,共7页
Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for ethylene preparation.Fe_(2)O_(3)/MgO oxygen carrier was prepared using the co-precipitation method.The influence of added Ni... Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for ethylene preparation.Fe_(2)O_(3)/MgO oxygen carrier was prepared using the co-precipitation method.The influence of added NiO and its different loadings on Fe_(2)O_(3)/MgO were investigated.Then,a series of oxygen carriers were applied in the CL-ODH of the ethane cycle system.Brunauer-Emmett-Teller(BET),X-ray diffractometry(XRD),X-ray photoelection spectroscopy(XPS),and H2-temperature programmed reduction(TPR)were used to characterize the physicochemical properties of these oxygen carriers.It was confirmed that an interaction between NiO and Fe_(2)O_(3) occurred based on the XPS and H2-TPR results.Based on the CL-ODH activity performance tests conducted in a fixed-bed reactor,it was revealed that ethylene selectivity was significantly improved after NiO addition.Fe_(2)O_(3)-10%NiO/MgO showed the best activity performance with 93%ethane conversion and 50%ethylene selectivity at a reaction temperature of 650℃,atmospheric pressure,and space velocity of 7500 mL/(g·h). 展开更多
关键词 chemical looping oxidative dehydrogenation oxygen carrier Fe_(2)O_(3)/MgO NIO
下载PDF
上一页 1 2 144 下一页 到第
使用帮助 返回顶部