期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Quantitative Analysis of the Silk Moth's Chemical Plume Tracing Locomotion Using a Hierarchical Classification Method 被引量:1
1
作者 Jouh Yeong Chew Daisuke Kurabayashi 《Journal of Bionic Engineering》 SCIE EI CSCD 2014年第2期268-281,共14页
The silk moth (Bombyx mori) exhibits efficient Chemical Plume Tracing (CPT), which is ideal for biomimetics. However, there is insufficient quantitative understanding of its CPT behavior. We propose a hierarchical... The silk moth (Bombyx mori) exhibits efficient Chemical Plume Tracing (CPT), which is ideal for biomimetics. However, there is insufficient quantitative understanding of its CPT behavior. We propose a hierarchical classification method to segment its natural CPT locomotion and to build its inverse model for detecting stimulus input. This provides the basis for quantitative analysis. The Gaussian mixture model with expectation-maximization algorithm is used first for unsupervised classification to decompose CPT locomotion data into Gaussian density components that represent a set of quantified elemental motions. A heuristic behavioral rule is used to categorize these components to eliminate components that are descriptive of the same motion. Then, the echo state network is used for supervised classification to evaluate segmented elemental motions and to compare CPT locomotion among different moths. In this case, categorized elemental motions are used as the training data to estimate stimulus time. We successfully built the inverse CPT behavioral model of the silk moth to detect stimulus input with good accuracy. The quantitative analysis indicates that silk moths exhibit behavioral singularity and time dependency in their CPT locomotion, which is dominated by its singularity. 展开更多
关键词 biomimetics RECOGNITION learning and adaptive systems chemical plume tracing quantitative analysis
原文传递
IR radiation characteristics of rocket exhaust plumes under varying motor operating conditions 被引量:13
2
作者 Qinglin NIU Zhihong HE Shikui DONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第3期1101-1114,共14页
The infrared(IR) irradiance signature from rocket motor exhaust plumes is closely related to motor type,propellant composition,burn time,rocket geometry,chamber parameters and flight conditions.In this paper,an infr... The infrared(IR) irradiance signature from rocket motor exhaust plumes is closely related to motor type,propellant composition,burn time,rocket geometry,chamber parameters and flight conditions.In this paper,an infrared signature analysis tool(IRSAT) was developed to understand the spectral characteristics of exhaust plumes in detail.Through a finite volume technique,flow field properties were obtained through the solution of axisymmetric Navier-Stokes equations with the Reynolds-averaged approach.A refined 13-species,30-reaction chemistry scheme was used for combustion effects and a k-e-Rtturbulence model for entrainment effects.Using flowfield properties as input data,the spectrum was integrated with a line of sight(LOS) method based on a single line group(SLG) model with Curtis-Godson approximation.The model correctly predicted spectral distribution in the wavelengths of 1.50–5.50 lm and had good agreement for its location with imaging spectrometer data.The IRSAT was then applied to discuss the effects of three operating conditions on IR signatures:(a) afterburning;(b) chamber pressure from ignition to cutoff;and(c) minor changes in the ratio of hydroxyl-terminated polybutadiene(HTPB) binder to ammonium perchlorate(AP) oxidizer in propellant.Results show that afterburning effects can increase the size and shape of radiance images with enhancement of radiation intensity up to 40%.Also,the total IR irradiance in different bands can be characterized by a non-dimensional chamber pressure trace in which the maximum discrepancy is less than 13% during ignition and engine cutoff.An increase of chamber pressure can lead to more distinct diamonds,whose distance intervals are extended,and the position of the first diamond moving backwards.In addition,an increase in HTPB/AP causes a significant jump in spectral intensity.The incremental rates of radiance intensity integrated in each band are linear with the increase of HTPB,and the growth rates of radiance intensities in some bands reach up to 50% as HTPB weight increases by 3%. 展开更多
关键词 Afterburning exhaust plume chemical reaction Ignition and cutoff Infrared radiation Solid rocket motor Propellant mixture ratio
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部