The recent works on the development of computational mass transfer (CMT) method and its applications in chemical process simulation are reviewed. Some development strategies and challenges in future research are als...The recent works on the development of computational mass transfer (CMT) method and its applications in chemical process simulation are reviewed. Some development strategies and challenges in future research are also discussed.展开更多
Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In exist...Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In existing technologies,the efficiency of big data applications(BDAs)in distributed systems hinges on the stable-state and low-latency links between worker nodes.However,LMCNs with high-dynamic nodes and long-distance links can not provide the above conditions,which makes the performance of OBDP hard to be intuitively measured.To bridge this gap,a multidimensional simulation platform is indispensable that can simulate the network environment of LMCNs and put BDAs in it for performance testing.Using STK's APIs and parallel computing framework,we achieve real-time simulation for thousands of satellite nodes,which are mapped as application nodes through software defined network(SDN)and container technologies.We elaborate the architecture and mechanism of the simulation platform,and take the Starlink and Hadoop as realistic examples for simulations.The results indicate that LMCNs have dynamic end-to-end latency which fluctuates periodically with the constellation movement.Compared to ground data center networks(GDCNs),LMCNs deteriorate the computing and storage job throughput,which can be alleviated by the utilization of erasure codes and data flow scheduling of worker nodes.展开更多
Background Most existing chemical experiment teaching systems lack solid immersive experiences,making it difficult to engage students.To address these challenges,we propose a chemical simulation teaching system based ...Background Most existing chemical experiment teaching systems lack solid immersive experiences,making it difficult to engage students.To address these challenges,we propose a chemical simulation teaching system based on virtual reality and gesture interaction.Methods The parameters of the models were obtained through actual investigation,whereby Blender and 3DS MAX were used to model and import these parameters into a physics engine.By establishing an interface for the physics engine,gesture interaction hardware,and virtual reality(VR)helmet,a highly realistic chemical experiment environment was created.Using code script logic,particle systems,as well as other systems,chemical phenomena were simulated.Furthermore,we created an online teaching platform using streaming media and databases to address the problems of distance teaching.Results The proposed system was evaluated against two mainstream products in the market.In the experiments,the proposed system outperformed the other products in terms of fidelity and practicality.Conclusions The proposed system which offers realistic simulations and practicability,can help improve the high school chemistry experimental education.展开更多
Ethylene production by the thermal cracking of naphtha is an energy-intensive process (up to 40 GJ heat per tonne ethylene), leading to significant formation of coke and nitrogen oxide (NOx), along with 1,8- 2 kg ...Ethylene production by the thermal cracking of naphtha is an energy-intensive process (up to 40 GJ heat per tonne ethylene), leading to significant formation of coke and nitrogen oxide (NOx), along with 1,8- 2 kg of carbon dioxide (CO2) emission per kilogram of ethylene produced, We propose an alternative pro- cess for the redox oxy-cracking (ROC) of naphtha, In this two-step process, hydrogen (H2) from naphtha cracking is selectively comhusted by a redox catalyst with its lattice oxygen first, The redox catalyst is subsequently re-oxidized by air and releases heat, which is used to satisfy the heat requirement for the cracking reactions, This intensified process reduces parasitic energy consumption and CO2 and NOx emissions, Moreover, the formation of ethylene and propylene can he enhanced due to the selective com-bustion of H2, In this study, the ROC process is simulated with ASPEN Plus^R based on experimental data from recently developed redox catalysts, Compared with traditional naphtha cracking, the ROC process can provide up to 52% reduction in energy consumption and CO2 emissions, The upstream section of the process consumes approximately 67% less energy while producing 28% more ethylene and propylene for every kilogram of naphtha feedstock,展开更多
Comparing with continuous production process, unsteady operation process, such as startup and shutdown,tends to abnormal situations due to a large number of operations of operators and dynamic state changes involved. ...Comparing with continuous production process, unsteady operation process, such as startup and shutdown,tends to abnormal situations due to a large number of operations of operators and dynamic state changes involved. To guarantee a safe operation, process hazard analysis(PHA) is very important to proactively identify the potential safety problems. In the chemical process industry, hazard and operability(HAZOP) analysis is the most widely used method. In this paper, based on proposed qualitative simulation and inference method, an automatic HAZOP analysis method for unsteady operation processes is proposed. Mass transfer and relationships among process variables are expressed by Petri net–directed graph model based fuzzy logic. Operating procedure is expressed according to a formal expression. Possible operation deviations from normal operating procedure are identified by using a group of guidewords. Hazards are identified automatically by qualitative simulation and inference when wrong operation process is performed. The method is validated by a rectification column system.展开更多
Resource-intensive agricultural simulation applications have increased the need for gridification tools–i.e.,software to transform and scale up the applications using Grid infrastructures–.Previous research has prop...Resource-intensive agricultural simulation applications have increased the need for gridification tools–i.e.,software to transform and scale up the applications using Grid infrastructures–.Previous research has proposed JASAG,a generic gridification tool for agricultural applications,through which the performance of a whole-farm simulation application called Simugan improved considerably.However,JASAG still lacks proper support for efficiently exploiting Grid storage resources,causing significant delays for assembling and summarizing the generated data.In this application note,two different data processing techniques in the context of JASAG are presented to tackle this problem.Simugan was again employed to validate the benefits of these techniques.Experiments using data processing techniques show that the execution time of Simugan was accelerated by a factor of up to 34.34.展开更多
Due to the scale effect, the uniform distribution of reagents in continuous flow reactor becomes bad when the channel is enlarged to tens of millimeters. Microfluidic field strategy was proposed to produce high mixing...Due to the scale effect, the uniform distribution of reagents in continuous flow reactor becomes bad when the channel is enlarged to tens of millimeters. Microfluidic field strategy was proposed to produce high mixing efficiency in large-scale channel. A 3D spiral baffle structure(3SBS) was designed and optimized to form microfluidic field disturbed by continuous secondary flow in millimeter scale Y-shaped tube mixer(YSTM). Enhancement effect of the 3SBS in liquid-liquid homogeneous chemical processes was verified and evaluated through the combination of simulation and experiment. Compared with 1 mm YSTM, 10 mm YSTM with 3SBS increased the treatment capacity by 100 times, shortened the basic complete mixing time by 0.85 times, which proves the potential of microfluidic field strategy in enhancement and scale-up of liquid-liquid homogeneous chemical process.展开更多
Elbow draft-tubes are widely used in large- and medium-sized hydropower stations in many countries. During the application, handling the somatotype of elbow tubes has been found challenging: in order to maintain the ...Elbow draft-tubes are widely used in large- and medium-sized hydropower stations in many countries. During the application, handling the somatotype of elbow tubes has been found challenging: in order to maintain the designed shape of draft tube and to meet the requirement of construction lofting, the configuration of reinforcing bars and the fabrication of templates, the geometry of elbow tubes has to be accurately calculated to draw engineering graphics. Based on the derived equations in this paper, the motion of elbow tube curve envelope is simulated by using computers, which shows directly the smoothness of the curve and provides dynamic simulation for the study and optimization of the design and construction of elbow draft tubes, along with the front view and bottom view.展开更多
Process optimization in equation-oriented(EO)modeling environments favors the gradient-based optimization algorithms by their abilities to provide accurate Jacobian matrices via automatic or symbolic differentiation.H...Process optimization in equation-oriented(EO)modeling environments favors the gradient-based optimization algorithms by their abilities to provide accurate Jacobian matrices via automatic or symbolic differentiation.However,computational inefficiencies including that in initial-point-finding for Newton type methods have significantly limited its application.Recently,progress has been made in using a pseudo-transient(PT)modeling method to address these difficulties,providing a fresh way forward in EO-based optimization.Nevertheless,research in this area remains open,and challenges need to be addressed.Therefore,understanding the state-of-the-art research on the PT method,its principle,and the strategies in composing effective methodologies using the PT modeling method is necessary for further developing EO-based methods for process optimization.For this purpose,the basic concepts for the PT modeling and the optimization framework based on the PT model are reviewed in this paper.Several typical applications,e.g.,complex distillation processes,cryogenic processes,and optimizations under uncertainty,are presented as well.Finally,we identify several main challenges and give prospects for the development of the PT based optimization methods.展开更多
<Abstract>A novel fault detection and diagnosis method was proposed, using dynamic simulation to monitor chemical process and identify faults when large tracking deviations occur. It aims at parameter failures, ...<Abstract>A novel fault detection and diagnosis method was proposed, using dynamic simulation to monitor chemical process and identify faults when large tracking deviations occur. It aims at parameter failures, and the parameters are updated via on-line correction. As it can predict the trend of process and determine the existence of malfunctions simultaneously, this method does not need to design problem-specific observer to estimate unmeasured state variables. Application of the proposed method is presented on one water tank and one aromatization reactor, and the results are compared with those from the traditional method.展开更多
基金Supported by the National Science Foundation of China(20736005).ACKNOWLEDGEMENTSThe authors acknowledge the assistance from thestaff in the State Key Laboratories of Chemical Engineering (Tianjin University).
文摘The recent works on the development of computational mass transfer (CMT) method and its applications in chemical process simulation are reviewed. Some development strategies and challenges in future research are also discussed.
基金supported by National Natural Sciences Foundation of China(No.62271165,62027802,62201307)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030297)+2 种基金the Shenzhen Science and Technology Program ZDSYS20210623091808025Stable Support Plan Program GXWD20231129102638002the Major Key Project of PCL(No.PCL2024A01)。
文摘Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In existing technologies,the efficiency of big data applications(BDAs)in distributed systems hinges on the stable-state and low-latency links between worker nodes.However,LMCNs with high-dynamic nodes and long-distance links can not provide the above conditions,which makes the performance of OBDP hard to be intuitively measured.To bridge this gap,a multidimensional simulation platform is indispensable that can simulate the network environment of LMCNs and put BDAs in it for performance testing.Using STK's APIs and parallel computing framework,we achieve real-time simulation for thousands of satellite nodes,which are mapped as application nodes through software defined network(SDN)and container technologies.We elaborate the architecture and mechanism of the simulation platform,and take the Starlink and Hadoop as realistic examples for simulations.The results indicate that LMCNs have dynamic end-to-end latency which fluctuates periodically with the constellation movement.Compared to ground data center networks(GDCNs),LMCNs deteriorate the computing and storage job throughput,which can be alleviated by the utilization of erasure codes and data flow scheduling of worker nodes.
基金National Innovation and Entrepreneurship Program for College Students(202218213001)Science and Technology Innovation Strategy of Guangdong Province(Science and Technology Innovation Cultivation of University Students 2020329182130C000002).
文摘Background Most existing chemical experiment teaching systems lack solid immersive experiences,making it difficult to engage students.To address these challenges,we propose a chemical simulation teaching system based on virtual reality and gesture interaction.Methods The parameters of the models were obtained through actual investigation,whereby Blender and 3DS MAX were used to model and import these parameters into a physics engine.By establishing an interface for the physics engine,gesture interaction hardware,and virtual reality(VR)helmet,a highly realistic chemical experiment environment was created.Using code script logic,particle systems,as well as other systems,chemical phenomena were simulated.Furthermore,we created an online teaching platform using streaming media and databases to address the problems of distance teaching.Results The proposed system was evaluated against two mainstream products in the market.In the experiments,the proposed system outperformed the other products in terms of fidelity and practicality.Conclusions The proposed system which offers realistic simulations and practicability,can help improve the high school chemistry experimental education.
基金This work was supported by the US National Science Foundation (CBET-1604605) and the Kenan Institute for Engineering, Technol-ogy and Science at North Carolina State University.
文摘Ethylene production by the thermal cracking of naphtha is an energy-intensive process (up to 40 GJ heat per tonne ethylene), leading to significant formation of coke and nitrogen oxide (NOx), along with 1,8- 2 kg of carbon dioxide (CO2) emission per kilogram of ethylene produced, We propose an alternative pro- cess for the redox oxy-cracking (ROC) of naphtha, In this two-step process, hydrogen (H2) from naphtha cracking is selectively comhusted by a redox catalyst with its lattice oxygen first, The redox catalyst is subsequently re-oxidized by air and releases heat, which is used to satisfy the heat requirement for the cracking reactions, This intensified process reduces parasitic energy consumption and CO2 and NOx emissions, Moreover, the formation of ethylene and propylene can he enhanced due to the selective com-bustion of H2, In this study, the ROC process is simulated with ASPEN Plus^R based on experimental data from recently developed redox catalysts, Compared with traditional naphtha cracking, the ROC process can provide up to 52% reduction in energy consumption and CO2 emissions, The upstream section of the process consumes approximately 67% less energy while producing 28% more ethylene and propylene for every kilogram of naphtha feedstock,
文摘Comparing with continuous production process, unsteady operation process, such as startup and shutdown,tends to abnormal situations due to a large number of operations of operators and dynamic state changes involved. To guarantee a safe operation, process hazard analysis(PHA) is very important to proactively identify the potential safety problems. In the chemical process industry, hazard and operability(HAZOP) analysis is the most widely used method. In this paper, based on proposed qualitative simulation and inference method, an automatic HAZOP analysis method for unsteady operation processes is proposed. Mass transfer and relationships among process variables are expressed by Petri net–directed graph model based fuzzy logic. Operating procedure is expressed according to a formal expression. Possible operation deviations from normal operating procedure are identified by using a group of guidewords. Hazards are identified automatically by qualitative simulation and inference when wrong operation process is performed. The method is validated by a rectification column system.
文摘Resource-intensive agricultural simulation applications have increased the need for gridification tools–i.e.,software to transform and scale up the applications using Grid infrastructures–.Previous research has proposed JASAG,a generic gridification tool for agricultural applications,through which the performance of a whole-farm simulation application called Simugan improved considerably.However,JASAG still lacks proper support for efficiently exploiting Grid storage resources,causing significant delays for assembling and summarizing the generated data.In this application note,two different data processing techniques in the context of JASAG are presented to tackle this problem.Simugan was again employed to validate the benefits of these techniques.Experiments using data processing techniques show that the execution time of Simugan was accelerated by a factor of up to 34.34.
基金supported by the National Key Research and Development Program of China (2021YFC2101900 and 2019YFA0905000)National Natural Science Foundation of China (21908094, 21776130 and 22078150)+1 种基金Nanjing International Joint Research and Development Project (202002037)Top-notch Academic Programs Project of Jiangsu Higher Education Institutions。
文摘Due to the scale effect, the uniform distribution of reagents in continuous flow reactor becomes bad when the channel is enlarged to tens of millimeters. Microfluidic field strategy was proposed to produce high mixing efficiency in large-scale channel. A 3D spiral baffle structure(3SBS) was designed and optimized to form microfluidic field disturbed by continuous secondary flow in millimeter scale Y-shaped tube mixer(YSTM). Enhancement effect of the 3SBS in liquid-liquid homogeneous chemical processes was verified and evaluated through the combination of simulation and experiment. Compared with 1 mm YSTM, 10 mm YSTM with 3SBS increased the treatment capacity by 100 times, shortened the basic complete mixing time by 0.85 times, which proves the potential of microfluidic field strategy in enhancement and scale-up of liquid-liquid homogeneous chemical process.
基金Supported by Open Fund of Key Laboratory of Ministry of Education of Hydraulic and Waterway Engineering of Chongqing Jiaotong University Province and Department Construction together(SLK2009A04)
文摘Elbow draft-tubes are widely used in large- and medium-sized hydropower stations in many countries. During the application, handling the somatotype of elbow tubes has been found challenging: in order to maintain the designed shape of draft tube and to meet the requirement of construction lofting, the configuration of reinforcing bars and the fabrication of templates, the geometry of elbow tubes has to be accurately calculated to draw engineering graphics. Based on the derived equations in this paper, the motion of elbow tube curve envelope is simulated by using computers, which shows directly the smoothness of the curve and provides dynamic simulation for the study and optimization of the design and construction of elbow draft tubes, along with the front view and bottom view.
基金supported by the National Natural Science Foundation of China(21978203,21676183).
文摘Process optimization in equation-oriented(EO)modeling environments favors the gradient-based optimization algorithms by their abilities to provide accurate Jacobian matrices via automatic or symbolic differentiation.However,computational inefficiencies including that in initial-point-finding for Newton type methods have significantly limited its application.Recently,progress has been made in using a pseudo-transient(PT)modeling method to address these difficulties,providing a fresh way forward in EO-based optimization.Nevertheless,research in this area remains open,and challenges need to be addressed.Therefore,understanding the state-of-the-art research on the PT method,its principle,and the strategies in composing effective methodologies using the PT modeling method is necessary for further developing EO-based methods for process optimization.For this purpose,the basic concepts for the PT modeling and the optimization framework based on the PT model are reviewed in this paper.Several typical applications,e.g.,complex distillation processes,cryogenic processes,and optimizations under uncertainty,are presented as well.Finally,we identify several main challenges and give prospects for the development of the PT based optimization methods.
基金Supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (No. 2005-29)Excellent Scholar Research Award Foundation of Shandong Province (No. 2006BS05005)
文摘<Abstract>A novel fault detection and diagnosis method was proposed, using dynamic simulation to monitor chemical process and identify faults when large tracking deviations occur. It aims at parameter failures, and the parameters are updated via on-line correction. As it can predict the trend of process and determine the existence of malfunctions simultaneously, this method does not need to design problem-specific observer to estimate unmeasured state variables. Application of the proposed method is presented on one water tank and one aromatization reactor, and the results are compared with those from the traditional method.