Daidzein has been widely used in pharmaceuticals,nutraceuticals,cosmetics,feed additives,etc.Its preparation process and related reaction mechanism need to be further investigated.A cost-effective process for synthesi...Daidzein has been widely used in pharmaceuticals,nutraceuticals,cosmetics,feed additives,etc.Its preparation process and related reaction mechanism need to be further investigated.A cost-effective process for synthesizing daidzein was developed in this work.In this article,a two-step synthesis of daidzein(Friedel–Crafts acylation and[5+1]cyclization)was developed via the employment of trifluoromethanesulfonic acid(TfOH)as an effective promoting reagent.The effect of reaction conditions such as solvent,the amount of TfOH,reaction temperature,and reactant ratio on the conversion rate and the yield of the reaction,respectively,was systematically investigated,and daidzein was obtained in 74.0%isolated yield under optimal conditions.Due to the facilitating effect of TfOH,the Friedel–Crafts acylation was completed within 10 min at 90℃ and the[5+1]cyclization was completed within 180 min at 25℃.In addition,a possible reaction mechanism for this process was proposed.The results of the study may provide useful guidance for industrial production of daidzein on a large scale.展开更多
A study of reaction mechanisms and chemical kinetics of pressurized pyrolysis of Chinese Liushuhe oil shale in the presence of water were conducted using an autoclave for simulating and modeling in-situ underground th...A study of reaction mechanisms and chemical kinetics of pressurized pyrolysis of Chinese Liushuhe oil shale in the presence of water were conducted using an autoclave for simulating and modeling in-situ underground thermal degradation.It was found that the oil shale was first pyrolyzed to form pyrobitumen,shale oil,shale gas and residue,then the pyrobitumen was further pyrolyzed to form more shale oil,shale gas,and residue.It means that there are two consecutive and parallel reactions.With increasing temperature,the pyrobitumen yield,as intermediate,first reached a maximum,then decreased to approximately zero.The kinetics results show that both these reactions are first order.The activation energy of pyrobitumen formation from oil shale is lower than that of shale oil formation from pyrobitumen.展开更多
Background:Traditional Chinese medicines are usually processed before they are used for clinical treatment.This is done in a way associated with the Maillard reaction.Methods:Based on the Maillard reaction,this paper ...Background:Traditional Chinese medicines are usually processed before they are used for clinical treatment.This is done in a way associated with the Maillard reaction.Methods:Based on the Maillard reaction,this paper analyzed the degree of processing of rehmannia root(Rehmanniae radix)relative to the dynamic variation rules of Maillard reaction index parameters,including pH,A420,amino acids,and 5-hydroxymethylfurfural.Furthermore,this study introduced thermal analysis techniques and pyrolysis kinetics to assess the influence of the correlation between processing raw rehmannia root and the Maillard reaction during carbonization.It then went through the whole process of transforming the raw material to end-product in order to explain the scientific connotation of processing it.Results:The results showed that each time rehmannia root was processed,its pH value and amino acid content decreased,while the A420 value and 5-HMF increased.Processing with wine shows a significant difference in these experimental indexes.The position and intensity of the maximum thermal weight loss rate peak of processed rehmannia root at different degrees of processing are different.Comprehensive quantitative 221±0.2°C for processed rehmannia root carbonization was the processing temperature limit.Moreover,the kinetic solution verified that the activation energy corresponding to the carbonization temperature was close to the maximum value of the activation energy of the whole carbonization process,and the optimal mechanism function was g(α)=((1−α)−1/3−1)2.Conclusion:The Maillard reaction occurred during the processing of rehmannia root mixed with carbonization.With each increase of the number of steaming and drying cycles involved in the processing,the level of Maillard reaction increased significantly.The wine-steaming method had a significant effect on the quality of the processed product.展开更多
Many applications of principal component analysis (PCA) can be found in dimensionality reduction. But linear PCA method is not well suitable for nonlinear chemical processes. A new PCA method based on im-proved input ...Many applications of principal component analysis (PCA) can be found in dimensionality reduction. But linear PCA method is not well suitable for nonlinear chemical processes. A new PCA method based on im-proved input training neural network (IT-NN) is proposed for the nonlinear system modelling in this paper. Mo-mentum factor and adaptive learning rate are introduced into learning algorithm to improve the training speed of IT-NN. Contrasting to the auto-associative neural network (ANN), IT-NN has less hidden layers and higher training speed. The effectiveness is illustrated through a comparison of IT-NN with linear PCA and ANN with experiments. Moreover, the IT-NN is combined with RBF neural network (RBF-NN) to model the yields of ethylene and propyl-ene in the naphtha pyrolysis system. From the illustrative example and practical application, IT-NN combined with RBF-NN is an effective method of nonlinear chemical process modelling.展开更多
Management of groundwater resources and remediation of groundwater pollution require reliable quantification of contaminant dynamics in natural aquifers, which can involve complex chemical dynamics and challenge tradi...Management of groundwater resources and remediation of groundwater pollution require reliable quantification of contaminant dynamics in natural aquifers, which can involve complex chemical dynamics and challenge traditional modeling approaches. The kinetics of chemical reactions in groundwater are well known to be controlled by medium heterogeneity and reactant mixing, motivating the development of particle-based Lagrangian approaches. Previous Lagrangian solvers have been limited to fundamental bimolecular reactions in typically one-dimensional porous media. In contrast to other existing studies, this study developed a fully Lagrangian framework, which was used to simulate diffusion-controlled, multi-step reactions in one-, two-, and three-dimensional porous media. The interaction radius of a reactant molecule, which controls the probability of reaction, was derived by the agent-based approach for both irreversible and reversible reactions. A flexible particle tracking scheme was then developed to build trajectories for particles undergoing mixing-limited, multi-step reactions. The simulated particle dynamics were checked against the kinetics for diffusion-controlled reactions and thermodynamic wellmixed reactions in one-and two-dimensional domains. Applicability of the novel simulator was further tested by(1) simulating precipitation of calcium carbonate minerals in a two-dimensional medium, and(2) quantifying multi-step chemical reactions observed in the laboratory. The flexibility of the Lagrangian simulator allows further refinement to capture complex transport affecting chemical mixing and hence reactions.展开更多
The estimation of chemical particles reactivity and the determination of chemical reactions direction are the actual theme in new scientific trend-Chemical Mesoscopics.Paper includes the proposal about the using the t...The estimation of chemical particles reactivity and the determination of chemical reactions direction are the actual theme in new scientific trend-Chemical Mesoscopics.Paper includes the proposal about the using the theory of free energy linear dependence from physical organic chemistry and their applications for prognosis of reactions flowing.The semi-empiric constants is given according to mesoscopic physics definitions as well as the transformed Kolmogorov-Avrami equation is discussed.It is the development of Chemical Mesoscopics for organic reactivity estimation including nanostructures reactivity.展开更多
The product distribution and kinetic analysis of low-rank coal vitrinite were investigated during the chemical looping gasification(CLG)process.The acid washing method was used to treat low-rank coal,and the density g...The product distribution and kinetic analysis of low-rank coal vitrinite were investigated during the chemical looping gasification(CLG)process.The acid washing method was used to treat low-rank coal,and the density gradient centrifugation method was adopted to obtain the coal macerals.By combining thermogravimetric analysis and online mass spectrometry,the influence of the heating rate and oxygen carrier(Fe2O3)blending ratio on product distribution was discussed.The macroscopic kinetic parameters were solved by the Kissinger-Akahira-Sunose(KAS)method,and the main gaseous product formation kinetic parameters were solved by the iso-conversion method.The results of vitrinite during slow heating chemical looping gasification showed that the main weight loss interval was 400–600℃,and the solid yield of sample vitrinite-Fe-10 at different heating rates was 64.30%–69.67%.When b=20℃·min^(-1),the maximum decomposition rate of vitrinite-Fe-10 was 0.312%min1.The addition of Fe2O_(3)reduced the maximum decomposition rate,but by comparing the chemical looping conversion characteristic index,it could be inferred that the chemical looping gasification of vitrinite might produce volatile substances higher than the pyrolysis process of vitrinite alone.The average activation energy of the reaction was significantly reduced during chemical looping gasification of vitrinite,which was lower than the average activation energy of 448.69 kJ·mol^(-1) during the pyrolysis process of vitrinite alone.The gaseous products were mainly CO and CO_(2).When the heating rate was 10℃·min^(-1),the highest activation energy for CH4 formation was 21.353 kJ·mol^(-1),and the lowest activation energy for CO formation was 9.7333 kJ·mol^(-1).This study provides basic data for exploring coal chemical looping gasification mechanism and reactor design by studying the chemical looping gasification process of coal macerals。展开更多
Chemical reactions (such as hydrogenation, hydroformylation, alkylation, esterification, etc.) at supercritical conditions afford opportunities to manipulate the solubility of reactants and products, to eliminate inte...Chemical reactions (such as hydrogenation, hydroformylation, alkylation, esterification, etc.) at supercritical conditions afford opportunities to manipulate the solubility of reactants and products, to eliminate interphase transport limitations in the reaction systems, and to be beneficial to the environment. This review concentrates on the most recent developments after 2001 with only a brief summary of pioneering research work before 2001.展开更多
In the previous experimental work, a new technology system for wood pyrolysis was developed to aim at mitigating climate change, global warming, and energy crisis as well as enhancing low electrification in rural area...In the previous experimental work, a new technology system for wood pyrolysis was developed to aim at mitigating climate change, global warming, and energy crisis as well as enhancing low electrification in rural areas in developing countries. The new technology system equipped with a pre-vacuum chamber requires low cost and less maintenance. However, large wood pyrolysis in the pre-vacuum chamber is rather complicated. To obtain a good understanding of the previous experimental results, a numerical analysis taking account of heat-mass transfer and chemical reaction is carried out. Two-step general reaction model is proposed for the numerical analysis. The first stage is volatile and char formation from the wood pieces and the second state is decomposition of the volatile to five species including vapor of tar. In this analysis, chemical formulae of the volatile and the tar are successfully identified hypothetically. The results obtained by this numerical analysis can explain the experimental results reasonably and provide useful information about time evolution of volatile formation, temperature change in pre-vacuum chamber with time, and species mole concentration decomposed from the volatile.展开更多
The application of high pressure favors many chemical processes, providing higher yields or improved rates in chemical reactions and improved solvent power in separation processes, and allowing activation barriers to ...The application of high pressure favors many chemical processes, providing higher yields or improved rates in chemical reactions and improved solvent power in separation processes, and allowing activation barriers to be overcome through the increase in molecular energy and molecular collision rates. High pressures-up to millions of bars using diamond anvil cells-can be achieved in the laboratory, and lead to many new routes for chemical synthesis and the synthesis of new materials with desirable thermody- namic, transport, and electronic properties. On the industrial scale, however, high-pressure processing is currently limited by the cost of compression and by materials limitations, so that few industrial processes are carried out at pressures above 25 MPa. An alternative approach to high-pressure processing is pro- posed here, in which very high local pressures are generated using the surface-driven interactions from a solid substrate. Recent experiments and molecular simulations show that such interactions can lead to local pressures as high as tens of thousands of bars (1 bar=1×10^5 Pa), and even millions of bars in some cases. Since the active high-pressure processing zone is inhomogeneous, the pressure is different in dif- ferent directions. In many cases, it is the pressure in the direction parallel to the surface of the substrate (the tangential pressure) that is most greatly enhanced. This pressure is exerted on the molecules to be processed, but not on the solid substrate or the containing vessel. Current knowledge of such pressure enhancement is reviewed, and the possibility of an alternative route to high-pressure processing based on surface-driven forces is discussed. Such surface-driven high-pressure processing would have the advantage of achieving much higher pressures than are possible with traditional bulk-phase processing, since it eliminates the need for mechanical compression. Moreover, no increased pressure is exerted on the containing vessel for the process, thus eliminating concerns about materials failure.展开更多
Advancing and deploying the Fe Ni-based catalyst,the state-of-the-art pre-electrocatalysts,for oxygen evolution reactions(OER)still suffer from unclear chemical state correlation to the catalytic ability,as evidenced ...Advancing and deploying the Fe Ni-based catalyst,the state-of-the-art pre-electrocatalysts,for oxygen evolution reactions(OER)still suffer from unclear chemical state correlation to the catalytic ability,as evidenced by the variedly reported performance for the different Fe Ni structures.Herein,we contributed the phase and redox chemical states tuning of Fe Ni oxides by the surface microenvironment regulation for the OER catalysis that was realized by the urea-assisted pyrolysis and molybdenum-doping technique by integrating molybdenum into the iron–nickel metal-organic precursor.Driven by the complicated and compromised atmosphere,namely,the oxidation state driven by the Mo doping and reduction ability induced by the urea-assisted pyrolysis,could transfer confined Fe Ni oxides to hybrid phases of Fe_(2)O_(3)and FeNi_(3)alloy,and the resultant compromised chemical states by the charge redistribution imparted very high electrocatalytic performance for OER compared with the control samples.The insitu Raman spectroscopy and post-XPS analysis confirmed the facile Fe/Ni oxyhydroxide active phase formation resulting from the proper phase and chemical states,and theoretical analysis disclosed the microenvironment regulation resulting in the charge redistribution forming the electron accumulation and depletion sites to accelerate the oxygen-species to oxyhydroxide-species transformation and enhance the electronic state density near the Fermi level by significantly reducing the energy barrier.The work not only showed the importance of surface chemical state tunning that can basically answer the varied performance of Fe Ni catalysts but also revealed an effective approach for fine-tuning their catalytic properties.展开更多
A theoretical investigation was conducted to study the transport-reaction process in the spray-drying flue gas desulfurization. A transport-reaction model of single particle was proposed, which considered the water ev...A theoretical investigation was conducted to study the transport-reaction process in the spray-drying flue gas desulfurization. A transport-reaction model of single particle was proposed, which considered the water evaporation from the surface of droplet and the reaction at the same time. Based on this model, the reaction rate and the absorbent utilization can be calculated. The most appropriate particle radius and the initial absorbent concentration can be deduced through comparing the wet lifetime with the residence time, the result shows in the case that the partial pressure of vapor in the bulk flue gas is 2000Pa, the optimum initial radius and absorbent concentration are 210~310 μ m and 23% respectively. The model can supply the optimum parameters for semi-dry FGD system designed.展开更多
Besides economics and controllability, waste minimization has now become an objective in designing chemical processes, and usually leads to high costs of investment and operation. An attempt was made to minimize waste...Besides economics and controllability, waste minimization has now become an objective in designing chemical processes, and usually leads to high costs of investment and operation. An attempt was made to minimize waste discharged from chemical reaction processes during the design and modification process while the operation conditions were also optimized to meet the requirements of technology and economics. Multiobjectives decision nonlinear programming (NLP) was employed to optimize the operation conditions of a chemical reaction process and reduce waste. A modeling language package-SPEEDUP was used to simulate the process. This paper presents a case study of the benzene production process. The flowsheet factors affecting the economics and waste generation were examined. Constraints were imposed to reduce the number of objectives and carry out optimal calculations easily. After comparisons of all possible solutions, best-compromise approach was applied to meet technological requirements and minimize waste.展开更多
基金the Science and Technology Planning Project of Guangdong Province(2016B090934002)Guangdong Provincial Natural Science Foundation(2023A1515011640)for financial support.
文摘Daidzein has been widely used in pharmaceuticals,nutraceuticals,cosmetics,feed additives,etc.Its preparation process and related reaction mechanism need to be further investigated.A cost-effective process for synthesizing daidzein was developed in this work.In this article,a two-step synthesis of daidzein(Friedel–Crafts acylation and[5+1]cyclization)was developed via the employment of trifluoromethanesulfonic acid(TfOH)as an effective promoting reagent.The effect of reaction conditions such as solvent,the amount of TfOH,reaction temperature,and reactant ratio on the conversion rate and the yield of the reaction,respectively,was systematically investigated,and daidzein was obtained in 74.0%isolated yield under optimal conditions.Due to the facilitating effect of TfOH,the Friedel–Crafts acylation was completed within 10 min at 90℃ and the[5+1]cyclization was completed within 180 min at 25℃.In addition,a possible reaction mechanism for this process was proposed.The results of the study may provide useful guidance for industrial production of daidzein on a large scale.
基金financial support from the National Science and Technology Major Project of China(Grant No. 2008ZX05018)Taishan Scholar Constructive Engineering Foundation of Shandong province(No. ts20120518)
文摘A study of reaction mechanisms and chemical kinetics of pressurized pyrolysis of Chinese Liushuhe oil shale in the presence of water were conducted using an autoclave for simulating and modeling in-situ underground thermal degradation.It was found that the oil shale was first pyrolyzed to form pyrobitumen,shale oil,shale gas and residue,then the pyrobitumen was further pyrolyzed to form more shale oil,shale gas,and residue.It means that there are two consecutive and parallel reactions.With increasing temperature,the pyrobitumen yield,as intermediate,first reached a maximum,then decreased to approximately zero.The kinetics results show that both these reactions are first order.The activation energy of pyrobitumen formation from oil shale is lower than that of shale oil formation from pyrobitumen.
基金This research was funded by General Project of the National Natural Science Foundation of China(No.81673601)the Key Research&Development Plan of Shanxi Province(Social Development Project,No.201603D3112002)Cultivate Scientific Research Excellence Programs of Higher Education Institutions in Shanxi(No.2019KJ032).
文摘Background:Traditional Chinese medicines are usually processed before they are used for clinical treatment.This is done in a way associated with the Maillard reaction.Methods:Based on the Maillard reaction,this paper analyzed the degree of processing of rehmannia root(Rehmanniae radix)relative to the dynamic variation rules of Maillard reaction index parameters,including pH,A420,amino acids,and 5-hydroxymethylfurfural.Furthermore,this study introduced thermal analysis techniques and pyrolysis kinetics to assess the influence of the correlation between processing raw rehmannia root and the Maillard reaction during carbonization.It then went through the whole process of transforming the raw material to end-product in order to explain the scientific connotation of processing it.Results:The results showed that each time rehmannia root was processed,its pH value and amino acid content decreased,while the A420 value and 5-HMF increased.Processing with wine shows a significant difference in these experimental indexes.The position and intensity of the maximum thermal weight loss rate peak of processed rehmannia root at different degrees of processing are different.Comprehensive quantitative 221±0.2°C for processed rehmannia root carbonization was the processing temperature limit.Moreover,the kinetic solution verified that the activation energy corresponding to the carbonization temperature was close to the maximum value of the activation energy of the whole carbonization process,and the optimal mechanism function was g(α)=((1−α)−1/3−1)2.Conclusion:The Maillard reaction occurred during the processing of rehmannia root mixed with carbonization.With each increase of the number of steaming and drying cycles involved in the processing,the level of Maillard reaction increased significantly.The wine-steaming method had a significant effect on the quality of the processed product.
基金Supported by Beijing Municipal Education Commission (No.xk100100435) and the Key Research Project of Science andTechnology from Sinopec (No.E03007).
文摘Many applications of principal component analysis (PCA) can be found in dimensionality reduction. But linear PCA method is not well suitable for nonlinear chemical processes. A new PCA method based on im-proved input training neural network (IT-NN) is proposed for the nonlinear system modelling in this paper. Mo-mentum factor and adaptive learning rate are introduced into learning algorithm to improve the training speed of IT-NN. Contrasting to the auto-associative neural network (ANN), IT-NN has less hidden layers and higher training speed. The effectiveness is illustrated through a comparison of IT-NN with linear PCA and ANN with experiments. Moreover, the IT-NN is combined with RBF neural network (RBF-NN) to model the yields of ethylene and propyl-ene in the naphtha pyrolysis system. From the illustrative example and practical application, IT-NN combined with RBF-NN is an effective method of nonlinear chemical process modelling.
基金supported by the National Natural Science Foundation of China(Grants No.41330632,41628202,and 11572112)
文摘Management of groundwater resources and remediation of groundwater pollution require reliable quantification of contaminant dynamics in natural aquifers, which can involve complex chemical dynamics and challenge traditional modeling approaches. The kinetics of chemical reactions in groundwater are well known to be controlled by medium heterogeneity and reactant mixing, motivating the development of particle-based Lagrangian approaches. Previous Lagrangian solvers have been limited to fundamental bimolecular reactions in typically one-dimensional porous media. In contrast to other existing studies, this study developed a fully Lagrangian framework, which was used to simulate diffusion-controlled, multi-step reactions in one-, two-, and three-dimensional porous media. The interaction radius of a reactant molecule, which controls the probability of reaction, was derived by the agent-based approach for both irreversible and reversible reactions. A flexible particle tracking scheme was then developed to build trajectories for particles undergoing mixing-limited, multi-step reactions. The simulated particle dynamics were checked against the kinetics for diffusion-controlled reactions and thermodynamic wellmixed reactions in one-and two-dimensional domains. Applicability of the novel simulator was further tested by(1) simulating precipitation of calcium carbonate minerals in a two-dimensional medium, and(2) quantifying multi-step chemical reactions observed in the laboratory. The flexibility of the Lagrangian simulator allows further refinement to capture complex transport affecting chemical mixing and hence reactions.
文摘The estimation of chemical particles reactivity and the determination of chemical reactions direction are the actual theme in new scientific trend-Chemical Mesoscopics.Paper includes the proposal about the using the theory of free energy linear dependence from physical organic chemistry and their applications for prognosis of reactions flowing.The semi-empiric constants is given according to mesoscopic physics definitions as well as the transformed Kolmogorov-Avrami equation is discussed.It is the development of Chemical Mesoscopics for organic reactivity estimation including nanostructures reactivity.
基金support of the National Natural Science Foundation of China(22038011,51976168)the K.C.Wong Education Foundation,China Postdoctoral Science Foundation(2019M653626)+2 种基金Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(2020-KF-06)the Promotion Plan for Young People of Shaanxi Association for Science and Technology(20180402)the Technology Foundation for Selected Overseas Chinese Scholar in Shaanxi Province(2018015).
文摘The product distribution and kinetic analysis of low-rank coal vitrinite were investigated during the chemical looping gasification(CLG)process.The acid washing method was used to treat low-rank coal,and the density gradient centrifugation method was adopted to obtain the coal macerals.By combining thermogravimetric analysis and online mass spectrometry,the influence of the heating rate and oxygen carrier(Fe2O3)blending ratio on product distribution was discussed.The macroscopic kinetic parameters were solved by the Kissinger-Akahira-Sunose(KAS)method,and the main gaseous product formation kinetic parameters were solved by the iso-conversion method.The results of vitrinite during slow heating chemical looping gasification showed that the main weight loss interval was 400–600℃,and the solid yield of sample vitrinite-Fe-10 at different heating rates was 64.30%–69.67%.When b=20℃·min^(-1),the maximum decomposition rate of vitrinite-Fe-10 was 0.312%min1.The addition of Fe2O_(3)reduced the maximum decomposition rate,but by comparing the chemical looping conversion characteristic index,it could be inferred that the chemical looping gasification of vitrinite might produce volatile substances higher than the pyrolysis process of vitrinite alone.The average activation energy of the reaction was significantly reduced during chemical looping gasification of vitrinite,which was lower than the average activation energy of 448.69 kJ·mol^(-1) during the pyrolysis process of vitrinite alone.The gaseous products were mainly CO and CO_(2).When the heating rate was 10℃·min^(-1),the highest activation energy for CH4 formation was 21.353 kJ·mol^(-1),and the lowest activation energy for CO formation was 9.7333 kJ·mol^(-1).This study provides basic data for exploring coal chemical looping gasification mechanism and reactor design by studying the chemical looping gasification process of coal macerals。
基金the National Key Fundamental Research Project (No. G2000048009) SINOPEC, China.
文摘Chemical reactions (such as hydrogenation, hydroformylation, alkylation, esterification, etc.) at supercritical conditions afford opportunities to manipulate the solubility of reactants and products, to eliminate interphase transport limitations in the reaction systems, and to be beneficial to the environment. This review concentrates on the most recent developments after 2001 with only a brief summary of pioneering research work before 2001.
文摘In the previous experimental work, a new technology system for wood pyrolysis was developed to aim at mitigating climate change, global warming, and energy crisis as well as enhancing low electrification in rural areas in developing countries. The new technology system equipped with a pre-vacuum chamber requires low cost and less maintenance. However, large wood pyrolysis in the pre-vacuum chamber is rather complicated. To obtain a good understanding of the previous experimental results, a numerical analysis taking account of heat-mass transfer and chemical reaction is carried out. Two-step general reaction model is proposed for the numerical analysis. The first stage is volatile and char formation from the wood pieces and the second state is decomposition of the volatile to five species including vapor of tar. In this analysis, chemical formulae of the volatile and the tar are successfully identified hypothetically. The results obtained by this numerical analysis can explain the experimental results reasonably and provide useful information about time evolution of volatile formation, temperature change in pre-vacuum chamber with time, and species mole concentration decomposed from the volatile.
基金the US National Science Foundation (CBET-1603851 and CHE-1710102) for support of this workthe National Science Center of Poland (DEC-2013/09/B/ST4/03711) for support
文摘The application of high pressure favors many chemical processes, providing higher yields or improved rates in chemical reactions and improved solvent power in separation processes, and allowing activation barriers to be overcome through the increase in molecular energy and molecular collision rates. High pressures-up to millions of bars using diamond anvil cells-can be achieved in the laboratory, and lead to many new routes for chemical synthesis and the synthesis of new materials with desirable thermody- namic, transport, and electronic properties. On the industrial scale, however, high-pressure processing is currently limited by the cost of compression and by materials limitations, so that few industrial processes are carried out at pressures above 25 MPa. An alternative approach to high-pressure processing is pro- posed here, in which very high local pressures are generated using the surface-driven interactions from a solid substrate. Recent experiments and molecular simulations show that such interactions can lead to local pressures as high as tens of thousands of bars (1 bar=1×10^5 Pa), and even millions of bars in some cases. Since the active high-pressure processing zone is inhomogeneous, the pressure is different in dif- ferent directions. In many cases, it is the pressure in the direction parallel to the surface of the substrate (the tangential pressure) that is most greatly enhanced. This pressure is exerted on the molecules to be processed, but not on the solid substrate or the containing vessel. Current knowledge of such pressure enhancement is reviewed, and the possibility of an alternative route to high-pressure processing based on surface-driven forces is discussed. Such surface-driven high-pressure processing would have the advantage of achieving much higher pressures than are possible with traditional bulk-phase processing, since it eliminates the need for mechanical compression. Moreover, no increased pressure is exerted on the containing vessel for the process, thus eliminating concerns about materials failure.
基金supported by the National Natural Science Foundation of China(21972124 and 22272148)。
文摘Advancing and deploying the Fe Ni-based catalyst,the state-of-the-art pre-electrocatalysts,for oxygen evolution reactions(OER)still suffer from unclear chemical state correlation to the catalytic ability,as evidenced by the variedly reported performance for the different Fe Ni structures.Herein,we contributed the phase and redox chemical states tuning of Fe Ni oxides by the surface microenvironment regulation for the OER catalysis that was realized by the urea-assisted pyrolysis and molybdenum-doping technique by integrating molybdenum into the iron–nickel metal-organic precursor.Driven by the complicated and compromised atmosphere,namely,the oxidation state driven by the Mo doping and reduction ability induced by the urea-assisted pyrolysis,could transfer confined Fe Ni oxides to hybrid phases of Fe_(2)O_(3)and FeNi_(3)alloy,and the resultant compromised chemical states by the charge redistribution imparted very high electrocatalytic performance for OER compared with the control samples.The insitu Raman spectroscopy and post-XPS analysis confirmed the facile Fe/Ni oxyhydroxide active phase formation resulting from the proper phase and chemical states,and theoretical analysis disclosed the microenvironment regulation resulting in the charge redistribution forming the electron accumulation and depletion sites to accelerate the oxygen-species to oxyhydroxide-species transformation and enhance the electronic state density near the Fermi level by significantly reducing the energy barrier.The work not only showed the importance of surface chemical state tunning that can basically answer the varied performance of Fe Ni catalysts but also revealed an effective approach for fine-tuning their catalytic properties.
文摘A theoretical investigation was conducted to study the transport-reaction process in the spray-drying flue gas desulfurization. A transport-reaction model of single particle was proposed, which considered the water evaporation from the surface of droplet and the reaction at the same time. Based on this model, the reaction rate and the absorbent utilization can be calculated. The most appropriate particle radius and the initial absorbent concentration can be deduced through comparing the wet lifetime with the residence time, the result shows in the case that the partial pressure of vapor in the bulk flue gas is 2000Pa, the optimum initial radius and absorbent concentration are 210~310 μ m and 23% respectively. The model can supply the optimum parameters for semi-dry FGD system designed.
文摘Besides economics and controllability, waste minimization has now become an objective in designing chemical processes, and usually leads to high costs of investment and operation. An attempt was made to minimize waste discharged from chemical reaction processes during the design and modification process while the operation conditions were also optimized to meet the requirements of technology and economics. Multiobjectives decision nonlinear programming (NLP) was employed to optimize the operation conditions of a chemical reaction process and reduce waste. A modeling language package-SPEEDUP was used to simulate the process. This paper presents a case study of the benzene production process. The flowsheet factors affecting the economics and waste generation were examined. Constraints were imposed to reduce the number of objectives and carry out optimal calculations easily. After comparisons of all possible solutions, best-compromise approach was applied to meet technological requirements and minimize waste.