This paper systematically reviews the mathematical modeling based on the computational fluid dynamics(CFD)method of equilibrium and nonequilibrium hypersonic flows.First,some physicochemical phenomena in hypersonic fl...This paper systematically reviews the mathematical modeling based on the computational fluid dynamics(CFD)method of equilibrium and nonequilibrium hypersonic flows.First,some physicochemical phenomena in hypersonic flows(e.g.,vibrational energy excitation and chemical reactions)and the flow characteristics at various altitudes(e.g.,thermochemical equilibrium,chemical nonequilibrium,and thermochemical nonequilibrium)are reviewed.Second,the judgment rules of whether the CFD method can be applied to hypersonic flows are summarized for accurate numerical calculations.This study focuses on the related numerical models and calculation processes of the CFD method in a thermochemical equilibrium flow and two nonequilibrium flows.For the thermochemical equilibrium flow,the governing equations,chemical composition calculation methods,and related research on the thermodynamic and transport properties of air are reviewed.For the nonequilibrium flows,the governing equations that include one-,two-,and three-temperature models are reviewed.The one-temperature model is applied to a chemical nonequilibrium flow,whereas the two-and three-temperature models are applied to a thermochemical nonequilibrium flow.The associated calculations and numerical models of the thermodynamic and transport properties,chemical reaction sources,and energy transfers between different energy modes of the three models are presented in detail.Finally,the corresponding numerical models of two special wall boundary conditions commonly used in hypersonic flows(i.e.,slip boundary conditions and catalytic walls)and related research,are reviewed.展开更多
The density and viscosity of ferric chloride/trioctylmethylammonium chloride ionic liquid(rFeCl_(3)/[A336]Cl)with different molar ratios(r=0.1-0.8)of FeCl_(3) to[A336]Cl were measured at temperatures from 313.15 to 35...The density and viscosity of ferric chloride/trioctylmethylammonium chloride ionic liquid(rFeCl_(3)/[A336]Cl)with different molar ratios(r=0.1-0.8)of FeCl_(3) to[A336]Cl were measured at temperatures from 313.15 to 358.15 K and atmospheric pressure.The density and viscosity data were fitted by the relevant temperature variation equations,respectively.The variation of density and viscosity with temperature and r was obtained.The solubility of rFeCl_(3)/[A336]Cl to H_2S was measured at temperatures from 318.15 to 348.15 K and pressures from 0 to 150 kPa.The effects of temperature,pressure,and r on the solubility of H_(2)S were discussed.The reaction equilibrium thermodynamic model(RETM)was used to fit the H_(2)S solubility data,and the average relative error was less than 1.3%,indicating that the model can relate the solubility data well.And Henry's constant and chemical reaction equilibrium constant were obtained by the RETM fitting.The relationships of Henry's constant and chemical reaction equilibrium constant with temperature and r were analyzed.展开更多
基金Key Laboratory of Hypersonic Aerodynamic Force and Heat Technology of the AVIC Aerodynamics Research Institute,National Natural Science Foundation of China(Grant Nos.31371873,31000665,51176027,and 31300408)Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(the second phase)of China and CAST-BISEE(Beijing Institute of Spacecraft Environment Engineering)innovation fund.
文摘This paper systematically reviews the mathematical modeling based on the computational fluid dynamics(CFD)method of equilibrium and nonequilibrium hypersonic flows.First,some physicochemical phenomena in hypersonic flows(e.g.,vibrational energy excitation and chemical reactions)and the flow characteristics at various altitudes(e.g.,thermochemical equilibrium,chemical nonequilibrium,and thermochemical nonequilibrium)are reviewed.Second,the judgment rules of whether the CFD method can be applied to hypersonic flows are summarized for accurate numerical calculations.This study focuses on the related numerical models and calculation processes of the CFD method in a thermochemical equilibrium flow and two nonequilibrium flows.For the thermochemical equilibrium flow,the governing equations,chemical composition calculation methods,and related research on the thermodynamic and transport properties of air are reviewed.For the nonequilibrium flows,the governing equations that include one-,two-,and three-temperature models are reviewed.The one-temperature model is applied to a chemical nonequilibrium flow,whereas the two-and three-temperature models are applied to a thermochemical nonequilibrium flow.The associated calculations and numerical models of the thermodynamic and transport properties,chemical reaction sources,and energy transfers between different energy modes of the three models are presented in detail.Finally,the corresponding numerical models of two special wall boundary conditions commonly used in hypersonic flows(i.e.,slip boundary conditions and catalytic walls)and related research,are reviewed.
基金Financial support from the National Natural Science Foundation of China(21775081)Shandong Province Natural Science Foundation(ZR2020MB145)。
文摘The density and viscosity of ferric chloride/trioctylmethylammonium chloride ionic liquid(rFeCl_(3)/[A336]Cl)with different molar ratios(r=0.1-0.8)of FeCl_(3) to[A336]Cl were measured at temperatures from 313.15 to 358.15 K and atmospheric pressure.The density and viscosity data were fitted by the relevant temperature variation equations,respectively.The variation of density and viscosity with temperature and r was obtained.The solubility of rFeCl_(3)/[A336]Cl to H_2S was measured at temperatures from 318.15 to 348.15 K and pressures from 0 to 150 kPa.The effects of temperature,pressure,and r on the solubility of H_(2)S were discussed.The reaction equilibrium thermodynamic model(RETM)was used to fit the H_(2)S solubility data,and the average relative error was less than 1.3%,indicating that the model can relate the solubility data well.And Henry's constant and chemical reaction equilibrium constant were obtained by the RETM fitting.The relationships of Henry's constant and chemical reaction equilibrium constant with temperature and r were analyzed.