期刊文献+
共找到1,775篇文章
< 1 2 89 >
每页显示 20 50 100
Chemical Reduction of CO_2 to Different Products during Photo Catalytic Reaction on TiO_2 under Diverse Conditions:an Overview 被引量:17
1
作者 G.R.Dey 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2007年第3期217-226,共10页
The chemical reduction of CO2 remains a challenge with respect to the reversal of the oxidative degradation of any organic materials. The conversion of CO2 into useful substances is essential in developing alternative... The chemical reduction of CO2 remains a challenge with respect to the reversal of the oxidative degradation of any organic materials. The conversion of CO2 into useful substances is essential in developing alternative fuels and various raw materials for different industries. This also aids in preventing the continuous rise in tropospheric temperature due to the green house effect of CO2. In this article an overview of the growth taken place so far in the field of CO2 chemical reduction is pre- sented. The discussion comprises of photochemical methods for the development of different products, viz. CO, CH3OH and CH4, through chemical reduction of CO2. This includes the use of photo catalysts, mainly TiO2, and the role of a hole scavenger (such as 2-propanol) for this purpose. 展开更多
关键词 CO2 chemical reduction H2 CH4 CO TiO2 hole scavenger PHOTOLYSIS
下载PDF
Recent advances on the reduction of CO2 to important C2+ oxygenated chemicals and fuels 被引量:6
2
作者 Jiachen Li Liguo Wang +3 位作者 Yan Cao Chanjuan Zhang PengHe Huiquan Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第11期2266-2279,共14页
The chemical utilization of CO_2 is a crucial step for the recycling of carbon resource. In recent years, the study on the conversion of CO_2 into a wide variety of C_(2+) important chemicals and fuels has received co... The chemical utilization of CO_2 is a crucial step for the recycling of carbon resource. In recent years, the study on the conversion of CO_2 into a wide variety of C_(2+) important chemicals and fuels has received considerable attention as an emerging technology. Since CO_2 is thermodynamically stable and kinetically inert, the effective activation of CO_2 molecule for the selective transformation to target products still remains a challenge. The welldesigned CO_2 reduction route and efficient catalyst system has imposed the feasibility of CO_2 conversion into C_(2+) chemicals and fuels. In this paper, we have reviewed the recent advances on chemical conversion of CO_2 into C_(2+) chemicals and fuels with wide practical applications, including important alcohols, acetic acid, dimethyl ether, olefins and gasoline. In particular, the synthetic routes for C\\C coupling and carbon chain growth, multifunctional catalyst design and reaction mechanisms are exclusively emphasized. 展开更多
关键词 CO2 reduction C2+ chemicalS Fuels CATALYSIS
下载PDF
Preparation of copper nanoparticles by chemical reduction method using potassium borohydride 被引量:7
3
作者 张秋利 杨志懋 +2 位作者 丁秉钧 兰新哲 郭莹娟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第S1期240-244,共5页
High dispersive copper nanoparticles were prepared by chemical reduction method using potassium borohydride as reducing agent.The effects of reactant ratio,concentration of CuSO4,reaction temperature,and dispersant on... High dispersive copper nanoparticles were prepared by chemical reduction method using potassium borohydride as reducing agent.The effects of reactant ratio,concentration of CuSO4,reaction temperature,and dispersant on the size of product and conversion rate were studied.The morphologies of copper nanoparticles were characterized by scanning electron microscopy.The results show that the optimum process conditions are as follows:the molar ratio of KBH4 to CuSO4 is 0.75(3:4),concentration of CuSO4 is 0.4 mol/L,reaction temperature is 30℃,and dispersant is n-butyl alcohol.The average particles size of copper powders with spherical shape gained is about 100 nm. 展开更多
关键词 COPPER NANOPARTICLES potassium borohydride chemical reduction
下载PDF
Microwave enhanced chemical reduction process for nitrite-containing wastewater treatment using sulfaminic acid 被引量:3
4
作者 Nan Li, Peng Wang, Qingsong Liu, Hailei Cao State Key Labaratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第1期56-61,共6页
High-concentration nitrite-containing wastewater that presents extreme toxicity to human health and organisms is difficult to be treated using traditional biological process. In this study, a novel microwave-enhanced ... High-concentration nitrite-containing wastewater that presents extreme toxicity to human health and organisms is difficult to be treated using traditional biological process. In this study, a novel microwave-enhanced chemical reduction process (MECRP) using sulfarninic acid (SA) was proposed as a new manner to treat such type of wastewater. Based on lab-scale experiments, it was shown that 75%-80% nitrite (NO2-) could be removed within time as short as 4 min under 50 W microwave irradiation in pH range 5-10 when molar ratio of SA to nitrite (SA/NO2-) was 0.8. Pilot-scale investigations demonstrated that MECRP was able to achieve nitrite and chemical oxygen demand (COD) removal with efficiency up to 80% and 20%, respectively under operating conditions of SA concentration 80 kg/m3, SA/NO2- ratio 0.8, microwave power 3.4 kW, and stirring time 3 min. Five-day biological oxygen demand (BODs)/COD value of treated effluent after MECRP was increased from 0.05 to 0.36 (by 620%), which clearly suggested a considerable improvement of biodegradability for subsequent biological treatment. This study provided a demonstration of using microwave irradiation to enhance reaction between SA and nitrite in a short time, in which nitrite in wastewater was completely converted into nitrogen gas without leaving any sludge and secondary pollutants. 展开更多
关键词 microwave-enhanced chemical reduction process nitrite-containing wastewater sulfaminic acid
下载PDF
Fischer–Tropsch synthesis using Co and Co-Ru bifunctional nanocatalyst supported on carbon nanotube prepared via chemical reduction method 被引量:2
5
作者 Jafar Shariati Ali Haghtalab Amir Mosayebi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第1期9-22,共14页
We used a chemical reduction method to synthesize the catalysts of cobalt(Co) and cobalt-ruthenium(Co-Ru) bifunctional supported on carbon nanotubes(CNTs) for Fischer–Tropsch synthesis(FTS) in a fixedbed reactor. The... We used a chemical reduction method to synthesize the catalysts of cobalt(Co) and cobalt-ruthenium(Co-Ru) bifunctional supported on carbon nanotubes(CNTs) for Fischer–Tropsch synthesis(FTS) in a fixedbed reactor. These Co-Ru/CNTs catalysts were synthesized with various weight proportions of Ru/Co(0.1 to 0.4 wt%) with keeping a fixed amount of cobalt(10 wt%). Moreover, for comparison purpose, CNTs supported Co-and Co(Ru)-based catalysts at same loading as the above catalysts were prepared through impregnation method. We characterize the present catalysts through the various techniques such as Energy–dispersive X-ray(EDX), Transmission Electron Microscopy(TEM), Brunauer–Emmett–Teller(BET),Hydrogen-Temperature-Programmed Reduction(H_2-TPR), Hydrogen-Temperature-Programmed Desorption(H_2-TPD) and O_2 titration. Thus using the chemical reduction method, a narrow particle size distribution was obtained so that the small cobalt particles were confined inside the CNTs. The Co-based catalyst prepared by impregnation was compared with the Co-Ru catalysts at the same loading. The results demonstrated that the use of chemical reduction method led to decrease the average Co oxide cluster size to8.7 nm so that the reduction enhanced about 24% and stabilized an earlier time at the stream. Among the prepared catalysts, the results indicated that the Co-Ru/CNTs catalysts demonstrated high catalytic activity with the highest long-chain hydrocarbons(C_(5+)), selectivity up to 74.76%, which was higher than those we obtained by the Co-Ru/γ-Al_2O_3(61._20%), Co/CNTs(43.68%) and Co/γ-Al_2O_3(37.69%). At the same time, comparing with those catalyst synthesized by impregnation, the use of chemical reduction led to enhancement of the C_(5+) selectivity from 59.30% to 68.83% and increment in FTS rate about 11% for the Co-Ru/CNTs catalyst. 展开更多
关键词 Cobalt-ruthenium Carbon nanotubes FISCHER-TROPSCH SYNTHESIS Catalyst nanoparticles chemical reduction method
下载PDF
Effects of surface chemical properties of activated coke on selective catalytic reduction of NO with NH_3 over commercial coal-based activated coke 被引量:12
6
作者 Xie Wei Sun Zhongchao +3 位作者 Xiong Yinwu Li Lanting Wu Tao Liang Daming 《International Journal of Mining Science and Technology》 SCIE EI 2014年第4期471-475,共5页
Surface chemical properties of typical commercial coal-based activated cokes were characterized by Xray photoelectron spectroscopy(XPS) and acid-base titration, and then the influence of surface chemical properties on... Surface chemical properties of typical commercial coal-based activated cokes were characterized by Xray photoelectron spectroscopy(XPS) and acid-base titration, and then the influence of surface chemical properties on catalytic performance of activated cokes of NO reduction with NH3 was investigated in a fixed-bed quartz micro reactor at 150 ℃. The results indicate that the selective catalytic reduction(SCR) activity of activated cokes with the increase of its surface acidic sites and oxygen content,obviously, a correlation between catalytic activity and surface acidic sites content by titration has higher linearity than catalytic activity and surface oxygen content by XPS. While basic sites content by acid-base titration have not correlation with SCR activity. It has been proposed that surface basic sites content measured by titration may not be on adjacent of acidic surface oxides and then cannot form of NO2-like species, thus the reaction of reduction of NO with NH3 have been retarded. 展开更多
关键词 Activated coke SCR Surface chemical properties Catalytic reduction
下载PDF
Atomic Level Dispersed Metal–Nitrogen–Carbon Catalyst toward Oxygen Reduction Reaction: Synthesis Strategies and Chemical Environmental Regulation 被引量:3
7
作者 Hengbo Yin Huicong Xia +3 位作者 Shuyan Zhao Kexie Li Jianan Zhang Shichun Mu 《Energy & Environmental Materials》 SCIE CSCD 2021年第1期5-18,共14页
For development and application of proton exchange membrane fuel cell(PEMFC) energy transformation technology, the cost performance must be elevated for the catalyst. At present, compared with noble metal-based cataly... For development and application of proton exchange membrane fuel cell(PEMFC) energy transformation technology, the cost performance must be elevated for the catalyst. At present, compared with noble metal-based catalysts, such as Pt-based catalysts, atomically dispersed metal–nitrogen–carbon(M–N–C) catalysts are popularity and show great potential in maximizing active site density, high atom utilization and high activity,making them the first choice to replace Pt-based catalysts. In the preparation of atomically dispersed metal–nitrogen–carbon catalyst, it is difficult to ensure that all active sites are uniformly dispersed, and the structure system of the active sites is not optimal. Based on this, we focus on various approaches for preparing M–N–C catalysts that are conducive to atomic dispersion, and the influence of the chemical environmental regulation of atoms on the catalytic sites in different catalysts. Therefore, we discuss the chemical environmental regulation of the catalytic sites by bimetals, atom clusters, and heteroatoms(B, S, and P). The active sites of M–N–C catalysts are explored in depth from the synthesis and characterization, reaction mechanisms, and density functional theory(DFT)calculations. Finally, the existing problems and development prospects of the current atomic dispersion M–N–C catalyst are proposed in detail. 展开更多
关键词 atomic-level catalyst chemical environmental effects metal-nitrogen-carbon oxygen reduction reaction synthesis strategy
下载PDF
Chemical Fertilizer Reduction and High Yield Cultivation Technique for Peanut 被引量:1
8
作者 Yaping ZHENG Shifu WANG +6 位作者 Zulin ZHENG Lili WANG Chunxiao WANG Zeqi LU Wei JIANG Hongwei ZANG Yongmei ZHENG 《Asian Agricultural Research》 2019年第10期87-90,共4页
For a long time,the amount of fertilizer applied to peanuts in China has been much higher than that of other main peanut producing countries.At the same time of increasing production,chemical fertilizers have also bro... For a long time,the amount of fertilizer applied to peanuts in China has been much higher than that of other main peanut producing countries.At the same time of increasing production,chemical fertilizers have also brought many adverse effects,which have brought potential threats to the sustainable development of peanut production.While continuously increasing the yield,reducing the amount of chemical fertilizer has become an urgent problem to be solved in peanut production of China.Based on the research results of our team,this paper appropriately absorbed the latest research progress of chemical fertilizer reduction in related fields,and established the cultivation technique for peanut fertilizer reduction and high yield under different cultivation modes,to realize the synchronization of fertilizer reduction and yield increase for peanut production.The technique includes two parts:common technology and different cultivation mode fertilization schemes.The former includes crop rotation,proper deep tillage,application of organic fertilizer,selection of nutrient-efficient varieties,topdressing of foliar fertilizer,etc.,the latter includes film mulching spring peanut,continuous cropping field,acidified soil,peanuts interplanting with wheat,and summer direct sowing,etc.This technique provides a technical support for the chemical fertilizer reduction of peanut production in China. 展开更多
关键词 PEANUT chemical FERTILIZER reduction High YIELD CULTIVATION
下载PDF
Size-dependent melting properties of Sn nanoparticles by chemical reduction synthesis 被引量:1
9
作者 邹长东 高玉来 +1 位作者 杨斌 翟启杰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第2期248-253,共6页
Tin nanoparticles with different size distribution were synthesized using chemical reduction method by applying NaBH4 as reduction agent.The Sn nanoparticles smaller than 100 nm were less agglomerated and no obviously... Tin nanoparticles with different size distribution were synthesized using chemical reduction method by applying NaBH4 as reduction agent.The Sn nanoparticles smaller than 100 nm were less agglomerated and no obviously oxidized.The melting properties of these synthesized nanoparticles were studied by differential scanning calorimetry.The melting temperatures of Sn nanoparticles in diameter of 81,40,36 and 34 nm were 226.1,221.8,221.1 and 219.5?欲espectively.The size-dependent melting temperature and size-dependent latent heat of fusion have been observed.The size-dependent melting properties of tin nanoparticles in this study were also comparatively analyzed by employing different size-dependent theoretical melting models and the differences between these models were discussed.The results show that the experimental data are in accordance with the LSM model and SPI model,and the LSM model gives the better understanding for the melting property of the Sn nanoparticles. 展开更多
关键词 Sn nanopartiele chemical reduction MELTING size-dependent property
下载PDF
Synthesis of Cu nanoparticles by chemical reduction method 被引量:1
10
作者 M. S. AGUILAR R. ESPARZA G. ROSAS 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第7期1510-1515,共6页
Cu nanoparticles (CuNPs) have been synthesized through an easy route by chemical reduction at room temperature. The Cu^2+ ions were reduced and stabilized with sodium borohydride and polyvinylpyrrolidone, respectively... Cu nanoparticles (CuNPs) have been synthesized through an easy route by chemical reduction at room temperature. The Cu^2+ ions were reduced and stabilized with sodium borohydride and polyvinylpyrrolidone, respectively. The effect of the variation of the reducing agent/precursor-salt (RA/PS) ratio on the size and morphology of the CuNPs was evaluated. The synthesized material was studied by ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The UV-Vis spectra showed a CuNPs plasmon peak at 569 nm and another peak belonging to Cu2O at 485 nm. XRD analysis showed the fcc-Cu phase with a small amount of fcc-Cu2O compound. SEM and TEM studies displayed that small semispherical CuNPs of approximately 7 nm were obtained at the RA/PS ratio of 2.6. The excess of polyvinylpyrrolidone stabilizer played an essential role in preventing CuNPs oxidation. On the other side, Cu2O polyhedral particles with larger sizes up to 150 nm were identified in the RA/PS ratio range of 2.0-1.84. In addition, Cu2O particles having star morphologies with quantum confinement at their tips were obtained at the RA/PS ratio of 1.66. 展开更多
关键词 Cu nanoparticles NABH4 chemical reduction polyvinylpyrrolidone stabilization CU2O
下载PDF
Numerical simulation of chemical vapor deposition reaction in polysilicon reduction furnace 被引量:1
11
作者 夏小霞 王志奇 刘斌 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第1期44-51,共8页
Three-dimensional model of chemical vapor deposition reaction in polysilicon reduction furnace was established by considering mass, momentum and energy transfer simultaneously. Then, CFD software was used to simulate ... Three-dimensional model of chemical vapor deposition reaction in polysilicon reduction furnace was established by considering mass, momentum and energy transfer simultaneously. Then, CFD software was used to simulate the flow, heat transfer and chemical reaction process in reduction furnace and to analyze the change law of deposition characteristic along with the H_2 mole fraction, silicon rod height and silicon rod diameter. The results show that with the increase of H_2 mole fraction, silicon growth rate increases firstly and then decreases. On the contrary, SiHCl_3 conversion rate and unit energy consumption decrease firstly and then increase. Silicon production rate increases constantly. The optimal H_2 mole fraction is 0.8-0.85. With the growth of silicon rod height, Si HCl3 conversion rate, silicon production rate and silicon growth rate increase, while unit energy consumption decreases. In terms of chemical reaction, the higher the silicon rod is, the better the performance is. In the view of the top-heavy situation, the actual silicon rod height is limited to be below 3 m. With the increase of silicon rod diameter, silicon growth rate decreases firstly and then increases. Besides, SiHCl_3 conversion rate and silicon production rate increase, while unit energy consumption first decreases sharply, then becomes steady. In practice, the bigger silicon rod diameter is more suitable. The optimal silicon rod diameter must be over 120 mm. 展开更多
关键词 polysilicon reduction furnace chemical vapor deposition silicon growth rate
下载PDF
Fabrication and Characterization of Tungsten Heavy Alloys Using Chemical Reduction and Mechanical Alloying Methods 被引量:1
12
作者 Zeinab Abdel Hamid Sayed Farag Moustafa +2 位作者 Walid Mohamed Daoush Fatema Abdel Mouez Mona Hassan 《Open Journal of Applied Sciences》 2013年第1期15-27,共13页
A novel reduction technique has been developed to synthesize nano-sized tungsten heavy alloys powders and compared with the same powders processed by mechanical alloying technique. In the first method, nano-sized tung... A novel reduction technique has been developed to synthesize nano-sized tungsten heavy alloys powders and compared with the same powders processed by mechanical alloying technique. In the first method, nano-sized tungsten heavy alloys powders have been obtained by reduction of precursors obtained by spray drying of several appropriate aqueous solutions, which were made from salts containing tungsten, cobalt, and nickel. By adjusting the stoichiometry of the component of the solutions, it is possible to obtain the desired chemical composition of the tungsten heavy alloys powders. In the second method, highly pure elemental powders of tungsten heavy alloys have been mechanically alloyed in a tumbler ball mill for different milling time. The investigated tungsten heavy alloy powders with the composition (95%W-3.5%Ni-1.5%Fe), (93%W-4.5%Ni-1.0%Fe-1.5%Co), and (90%W-6%Ni-4%Cu) have been prepared using both methods. The prepared powders have been compacted at 70 bar (200 MPa) and sintered in vacuum furnace at 1400℃. Vacuum sintering was carried out to achieve full densification of the produced tungsten heavy alloys. The investigated materials were going to be evaluated the physical and mechanical properties of the sintered parts such as density;electrical conductivity, hardness, and transverse rupture strength. The results reveal that, the grain size of alloys fabricated by chemical reduction technique (53.1 - 63.8 nm) is smaller than that fabricated by mechanical alloying technique (56.4 - 71.4 nm). 展开更多
关键词 TUNGSTEN Heavy Alloys Mechanical ALLOYING chemical reduction Powder METALLURGY Hardness TRANSVERSE RUPTURE Strength Conductivity
下载PDF
Investigation of Fe-Ni-B and Fe-Cr-B Ultrafine Amorphous Alloy Powders Prepared by Chemical Reduction
13
作者 Gang Bangwei Tan Zhaosheng +4 位作者 Yi Ge Wang Haiquan Liu Zhihui Wang Jianwen Cao Meng 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 1996年第1期19-23,共5页
Ultrafine amorphous alloy powders of spherical shape with diameters from 10 to 50nm for Fe-Ni-B and Fe-Cr-B were prepared by chemical reduction. The amorphous structure of two powders was identified by X-ray diffracti... Ultrafine amorphous alloy powders of spherical shape with diameters from 10 to 50nm for Fe-Ni-B and Fe-Cr-B were prepared by chemical reduction. The amorphous structure of two powders was identified by X-ray diffraction. The B concentrations for the two alloy systems did not change dramatically, as the preparation condition changed. An oxide film covered up the powders. The maximum magnetization decreased as increasing the content of Ni or Cr. 展开更多
关键词 ultrafine powder amorphous alloy structure magnetic property chemical reduction
下载PDF
The Preparation of Nano Silver by Chemical Reduction Method 被引量:1
14
作者 Tevfik Raci Sertbakan Emad K. Al-Shakarchi Saif Sultan Mala 《Journal of Modern Physics》 2022年第1期81-88,共8页
A silver nanostructures prepared by using chemical reduction method. The silver nanoparticles were prepared with diameters of about (20 nm). Numerous techniques had been used to study the optical, structural like the ... A silver nanostructures prepared by using chemical reduction method. The silver nanoparticles were prepared with diameters of about (20 nm). Numerous techniques had been used to study the optical, structural like the UV-Vis absorption spectrometer, Ttransmission Electron Microscopy (TEM), Field-Emission Scanning Electron microscope (FESEM), and X-ray diffraction (XRD). The practical results exhibited the absorption spectrum of the prepared nanoparticles at (357 nm), it was found that there is a relationship between the positions of the optical absorption peak and the size of the silver nanoparticles. The analysis of TEM results showed the presence of nanoparticles in the range (20 nm). The analyzing of XRD results explained the crystal structure for silver nanoparticles. It is found a cubic unit cell have a lattice constants (a = 4.0855 <span style="white-space:nowrap;">&Aring;</span>), with the Miller indices were (111), (002), (002), and (113). 展开更多
关键词 chemical reduction Method UV-Vis Absorption Spectrometer Field-Emission Scanning Electron Microscope Ttransmission Electron Microscopy
下载PDF
Synthesis of Sn-3.5Ag Alloy Nanosolder by Chemical Reduction Method
15
作者 Hsin Jen Pan Chao Yang Lin +1 位作者 Udit Surya Mohanty Jung Hua Chou 《Materials Sciences and Applications》 2011年第10期1480-1484,共5页
The synthesis of Sn-3.5Ag alloy nanosolder was investigated by chemical reduction method. In this method, chemical precipitation was achieved by using sodium NaBH4 as a reducing agent and PVP (poly-m-vinyl 2- pyrrolid... The synthesis of Sn-3.5Ag alloy nanosolder was investigated by chemical reduction method. In this method, chemical precipitation was achieved by using sodium NaBH4 as a reducing agent and PVP (poly-m-vinyl 2- pyrrolidone) as a stabilizer. The experimental results obtained with different amounts of NaBH4 and PVP were compared. X-ray diffraction (XRD) patterns revealed that Ag3Sn was formed due to the successful alloying process. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) demonstrated a change in the morphology of Sn-3.5 Ag alloy nanosolder with increase in the PVP content in the bath. The size of the nanoparticles ranged from 300 to 700 nm. The nanosolder/nanoparticles were thus synthesized successfully under controlled and optimized chemical reduction process. 展开更多
关键词 ALLOY AGGLOMERATION Nanoparticles chemical reduction MORPHOLOGY X-RAY DIFFRACTION
下载PDF
Fe3O4 and Fe Nanoparticles by Chemical Reduction of Fe(acac)3 by Ascorbic Acid: Role of Water
16
作者 Ajinkya G. Nene Makoto Takahashi Prakash R. Somani 《World Journal of Nano Science and Engineering》 2016年第1期20-28,共9页
Nanoparticles of Fe<sub>3</sub>O<sub>4</sub> and Fe are chemically synthesized by reduction of Fe(acac)<sub>3</sub> using ascorbic acid in controlled condition. It was observed that... Nanoparticles of Fe<sub>3</sub>O<sub>4</sub> and Fe are chemically synthesized by reduction of Fe(acac)<sub>3</sub> using ascorbic acid in controlled condition. It was observed that addition of water during the chemical synthesis process yields Fe3O4 nanoparticles, whereas if the reaction is carried out in absence of water yields Fe nanoparticles—which get oxidized upon exposure to air atmosphere. Fe<sub>3</sub>O<sub>4</sub> (15 ± 5 nm) and Fe/iron oxide nanoparticles (7 ± 1 nm) were successfully synthesized in the comparative study reported herewith. Mechanism for formation/synthesis of Fe<sub>3</sub>O<sub>4</sub> and Fe/iron oxide nanoparticles is proposed herewith in which added water acts as an oxygen supplier. Physico-chemical characterization done by SEM, TEM, EDAX, and XPS supports the proposed mechanism. 展开更多
关键词 Fe3O4 Nanoparticles Fe-Nanoparticles Iron Oxide chemical reduction Method
下载PDF
A thermodynamic view on the in-situ carbon dioxide reduction by biomass-derived hydrogen during calcium carbonate decomposition
17
作者 Peng Jiang Hao Zhang +5 位作者 Guanhan Zhao Lin Li Tuo Ji Liwen Mu Xiaohua Lu Jiahua Zhu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期231-240,共10页
In the carbonate industry,deep decarbonization strategies are necessary to effectively remediate CO_(2).These strategies mainly include both sustainable energy supplies and the conversion of CO_(2)in downstream proces... In the carbonate industry,deep decarbonization strategies are necessary to effectively remediate CO_(2).These strategies mainly include both sustainable energy supplies and the conversion of CO_(2)in downstream processes.This study developed a coupled process of biomass chemical looping H2 production and reductive calcination of CaCO_(3).Firstly,a mass and energy balance of the coupled process was established in Aspen Plus.Following this,process optimization and energy integration were implemented to provide optimized operation conditions.Lastly,a life cycle assessment was carried out to assess the carbon footprint of the coupled process.Results reveal that the decomposition temperature of CaCO_(3)in an H_(2)atmosphere can be reduced to 780℃(generally around 900℃),and the conversion of CO_(2)from CaCO_(3)decomposition reached 81.33%with an H2:CO ratio of 2.49 in gaseous products.By optimizing systemic energy through heat integration,an energy efficiency of 86.30%was achieved.Additionally,the carbon footprint analysis revealed that the process with energy integration had a low global warming potential(GWP)of-2.624 kg·kg^(-1)(CO_(2)/CaO).Conclusively,this work performed a systematic analysis of introducing biomass-derived H_(2)into CaCO_(3)calcination and demonstrated the positive role of reductive calcination using green H_(2)in mitigating CO_(2)emissions within the carbonate industry. 展开更多
关键词 BIOMASS CaCO_(3)reductive calcination chemical looping Hydrogen production Carbon footprint Thermodynamics process
下载PDF
中国化肥减量增效行动与技术研究
18
作者 李娜 田云龙 +3 位作者 张蕾 王胜涛 朱昌雄 李红娜 《农业资源与环境学报》 北大核心 2025年第1期1-10,共10页
化肥是当代农业的重要生产资料,在农业生产中不可替代,但化肥的不合理施用会对环境造成潜在威胁。本文对我国近年来出台的系列化肥减量增效行动和政策、国家统计年鉴数据和相关的研究进展进行了梳理总结。结果表明:我国的化肥减量增效... 化肥是当代农业的重要生产资料,在农业生产中不可替代,但化肥的不合理施用会对环境造成潜在威胁。本文对我国近年来出台的系列化肥减量增效行动和政策、国家统计年鉴数据和相关的研究进展进行了梳理总结。结果表明:我国的化肥减量增效行动已初具成效,表现为2015—2022年的8年间,化肥用量减少15.7%,而粮食增产3.9%;化肥施用结构趋向合理化,表现为氮肥用量持续减少,复合肥用量持续增加;我国的化肥施用强度也有所下降,2022年化肥施用强度(298.8 kg·hm^(-2))比2015年减少62.2 kg·hm^(-2),但施肥强度仍有进一步减量空间;化肥减量、养分利用、元素循环转化等方面的研究有望为提高化肥利用率、推进减量增效行动提供基础科学依据。本文为我国进一步开展科学的化肥减量增效行动提出政策和管理建议,以期为我国的化肥减量增效行动的现状和未来的行动方针提供科学依据和参考。 展开更多
关键词 化肥 氮肥利用率 减量增效 有机肥替代 施肥强度
下载PDF
胺吸收体系中CO_(2)催化解吸再生技术的研究进展
19
作者 王宁 陆诗建 +4 位作者 刘玲 梁静 刘苗苗 孙梦圆 康国俊 《化工进展》 北大核心 2025年第1期445-464,共20页
人类工业活动造成大气中CO_(2)含量逐渐增加,形成温室效应,导致全球气候异常。碳捕集、利用与封存(CCUS)技术,尤其是CO_(2)化学吸收过程,是实现大规模CO_(2)减排和遏制全球气候变化的最有效的方法之一。然而,由于CO_(2)捕集技术的高能... 人类工业活动造成大气中CO_(2)含量逐渐增加,形成温室效应,导致全球气候异常。碳捕集、利用与封存(CCUS)技术,尤其是CO_(2)化学吸收过程,是实现大规模CO_(2)减排和遏制全球气候变化的最有效的方法之一。然而,由于CO_(2)捕集技术的高能耗高成本是导致CCUS技术无法大规模推广和商业化应用的瓶颈之一。近年来,胺吸收剂催化再生技术作为一种具有大规模应用潜力的CO_(2)捕集节能新技术引起了国内外研究者的广泛关注。本文综述了胺吸收体系中CO_(2)催化解吸再生技术的研究现状,详细介绍了非均相催化剂的种类、特点、优缺点和面临的挑战,阐述了胺溶液中CO_(2)催化解吸反应机理以及Lewis酸、Br?nsted酸和碱性活性位点等在催化反应过程中的作用机制,总结了影响催化剂解吸再生性能的主要因素。最后,全面分析了催化解吸再生技术用于燃烧后CO_(2)捕集的现状,并对未来的研究趋势进行了展望。 展开更多
关键词 燃后碳捕集 化学吸收法 催化再生技术 非均相催化剂 低能耗
下载PDF
2024年美国绿色化学挑战奖项目创新研究进展
20
作者 程海涛 《现代化工》 CAS 北大核心 2025年第1期13-16,共4页
对美国环保署(EPA)公布的2024年度美国绿色化学挑战奖(GCCA)获奖成果的创新与价值进行了分析与阐述。Merck&Co.Inc.公司被授予绿色合成路线奖(Greener Synthetic Pathways Award),其创新价值在于发明了一种新的“连续工艺”生产其P... 对美国环保署(EPA)公布的2024年度美国绿色化学挑战奖(GCCA)获奖成果的创新与价值进行了分析与阐述。Merck&Co.Inc.公司被授予绿色合成路线奖(Greener Synthetic Pathways Award),其创新价值在于发明了一种新的“连续工艺”生产其PD-1疗法KEYTRUDA■(pembrolizumab)用药物。Pro-Farm Group被授予安全与可降解化学品设计奖,开发了一种具有天然杀虫作用的微生物农药RinoTec^(TM)。Viridis化学公司被授予小企业奖,开发了一种利用可再生原料催化合成乙酸乙酯的工艺流程。特拉华大学Dionisios G.Vlachos教授被授予学术奖(Academic Award),开发了利用可再生原料生产润滑油主要化学成分的新合成方法。PhoSul■研究团队被授予环境特别奖,开发了PhoSul®增强型磷矿肥料。 展开更多
关键词 GCCA 减排节能 安全与可降解化学品设计 2024年
下载PDF
上一页 1 2 89 下一页 到第
使用帮助 返回顶部