期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Enhanced Oxidation Resistance of Iron Nanoparticles via Surface Modification in Chemical Vapor Condensation Process 被引量:4
1
作者 Dong-Won Lee Ji-Hun Yu +1 位作者 Taesuk Jang Byoung-Kee Kim 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2010年第4期367-370,共4页
In order to prevent the oxide formation on the surface of nano-size iron particles and thereby to improve the oxidation resistance in ordinary condition, iron nanoparticles synthesized by a chemical vapor condensation... In order to prevent the oxide formation on the surface of nano-size iron particles and thereby to improve the oxidation resistance in ordinary condition, iron nanoparticles synthesized by a chemical vapor condensation method were directly soaked in hexadecanethiol solution to coat them with a polymer layer. Oxygen content in the polymer-coated iron nanoparticles was significantly lower than that in usual air-passivated particles possessing iron-core/oxide-shell structure. Accordingly, oxidation resistance of the polymer-coated particles at an elevated temperature below 130℃ in air was 10-40 times higher than that of the normally passivated particles. 展开更多
关键词 Powder technology Nano materials IRON chemical vapor condensation
原文传递
Synthesis and Characterization of SiO_2 Coated γ-Fe_2O_3 Nanocomposite Powder for Hyperthermic Application 被引量:1
2
作者 Ji-Hun Yu Jai-Sung Lee +1 位作者 Yong-Ho Choa Heinrich Hofmann 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2010年第4期333-336,共4页
SiO2 coated γ-Fe2O3 nanocomposite powder has been successfully synthesized by chemical vapor condensation process and its feasibility on hyperthermic application was investigated in this study. The power loss of SiO2... SiO2 coated γ-Fe2O3 nanocomposite powder has been successfully synthesized by chemical vapor condensation process and its feasibility on hyperthermic application was investigated in this study. The power loss of SiO2 coated γ-Fe2O3 nanocomposite powder which means the magnetic heating effect under alternative magnetic field was much higher than the single phase γ-Fe2O3 nano powder due to the very fine size under 20 nm and well dispersion in biologically compatible SiO2 matrix. The superparamagnetism and hyperthermic property of SiO2 coated γ-Fe2O3 nanocomposite powder were discussed in terms of microstructural development in this study. 展开更多
关键词 HYPERTHERMIA Nano-Bio chemical vapor condensation Silica coated iron oxide nanoparticle SUPERPARAMAGNETISM
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部