期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Transfer-free chemical vapor deposition graphene for nitride epitaxy: challenges, current status and future outlook
1
作者 Xiang Gao Senlin Li +4 位作者 Jingfeng Bi Kaixuan Zhou Meng Li Zhongfan Liu Jingyu Sun 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第3期824-840,共17页
Graphene, a two-dimensional material with outstanding electrical and mechanical properties, has attracted considerable attention in the field of semiconductor technologies due to its potential use as a buffer layer fo... Graphene, a two-dimensional material with outstanding electrical and mechanical properties, has attracted considerable attention in the field of semiconductor technologies due to its potential use as a buffer layer for the epitaxial Ⅲ-nitride growth. In recent years, significant progress has been made in the chemical vapor deposition growth of graphene on various insulating substrates for the nitride epitaxy, which offers a facile, inexpensive, and easily scalable methodology. However, certain challenges are still present in the form of producing high-quality graphene and achieving optimal interface compatibility with Ⅲ-nitride materials.In this review, we provide an overview of the bottlenecks associated with the transferred graphene fabrication techniques and the state-of-the-art techniques for the transfer-free graphene growth. The present contribution highlights the current progress in the transfer-free graphene growth on different insulating substrates, including sapphire, quartz, SiO_(2)/Si, and discusses the potential applications of transfer-free graphene in the Ⅲ-nitride epitaxy. Finally, it includes the prospects of the transfer-free graphene growth for the Ⅲ-nitride epitaxy and the challenges that should be overcome to realize its full potential in this field. 展开更多
关键词 Transfer-free chemical vapor deposition graphene for nitride epitaxy challenges current status and future outlook graphene
原文传递
High current limits in chemical vapor deposited graphene spintronic devices
2
作者 Daria Belotcerkovtceva J.Panda +3 位作者 M.Ramu Tapati Sarkar Ulrich Noumbe M.Venkata Kamalakar 《Nano Research》 SCIE EI CSCD 2023年第4期4233-4239,共7页
Understanding the stability and current-carrying capacity of graphene spintronic devices is key to their applications in graphene channel-based spin current sensors,spin-torque oscillators,and potential spin-integrate... Understanding the stability and current-carrying capacity of graphene spintronic devices is key to their applications in graphene channel-based spin current sensors,spin-torque oscillators,and potential spin-integrated circuits.However,despite the demonstrated high current densities in exfoliated graphene,the current-carrying capacity of large-scale chemical vapor deposited(CVD)graphene is not established.Particularly,the grainy nature of chemical vapor deposited graphene and the presence of a tunnel barrier in CVD graphene spin devices pose questions about the stability of high current electrical spin injection.In this work,we observe that despite structural imperfections,CVD graphene sustains remarkably highest currents of 5.2×10^(8)A/cm^(2),up to two orders higher than previously reported values in multilayer CVD graphene,with the capacity primarily dependent upon the sheet resistance of graphene.Furthermore,we notice a reversible regime,up to which CVD graphene can be operated without degradation with operating currents as high as 108 A/cm^(2),significantly high and durable over long time of operation with spin valve signals observed up to such high current densities.At the same time,the tunnel barrier resistance can be modified by the application of high currents.Our results demonstrate the robustness of large-scale CVD graphene and bring fresh insights for engineering and harnessing pure spin currents for innovative device applications. 展开更多
关键词 chemical vapor deposited(CVD)graphene high current density graphene spintronics spin integrated circuits graphene spin valve
原文传递
Effective exposure of nitrogen heteroatoms in 3D porous graphene framework for oxygen reduction reaction and lithium–sulfur batteries 被引量:12
3
作者 Jia-Le Shi Cheng Tang +2 位作者 Jia-Qi Huang Wancheng Zhu Qiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期167-175,共9页
The introduction of nitrogen heteroatoms into carbon materials is a facile and efficient strategy to regulate their reactivities and facilitate their potential applications in energy conversion and storage. However,mo... The introduction of nitrogen heteroatoms into carbon materials is a facile and efficient strategy to regulate their reactivities and facilitate their potential applications in energy conversion and storage. However,most of nitrogen heteroatoms are doped into the bulk phase of carbon without site selectivity, which significantly reduces the contacts of feedstocks with the active dopants in a conductive scaffold. Herein we proposed the chemical vapor deposition of a nitrogen-doped graphene skin on the 3D porous graphene framework and donated the carbon/carbon composite as surface N-doped grapheme(SNG). In contrast with routine N-doped graphene framework(NGF) with bulk distribution of N heteroatoms, the SNG renders a high surface N content of 1.81 at%, enhanced electrical conductivity of 31 S cm^(-1), a large surface area of 1531 m^2 g^(-1), a low defect density with a low I_D/I_G ratio of 1.55 calculated from Raman spectrum, and a high oxidation peak of 532.7 ℃ in oxygen atmosphere. The selective distribution of N heteroatoms on the surface of SNG affords the effective exposure of active sites at the interfaces of the electrode/electrolyte, so that more N heteroatoms are able to contact with oxygen feedstocks in oxygen reduction reaction or serve as polysulfide anchoring sites to retard the shuttle of polysulfides in a lithium–sulfur battery. This work opens a fresh viewpoint on the manipulation of active site distribution in a conductive scaffolds for multi-electron redox reaction based energy conversion and storage. 展开更多
关键词 Nitrogen-doped graphene chemical vapor deposition Oxygen reduction reaction Lithium-sulfur battery Porous carbon materials Exposure of active sites
下载PDF
One-step synthesis of novel snowflake-like Si-O/Si-C nanostructures on 3D graphene/Cu foam by chemical vapor deposition 被引量:2
4
作者 Jing Ning Dong Wang +6 位作者 Jincheng Zhang Xin Feng Ruixia Zhong Jiabo Chen Jianguo Dong Lixin Guo Yue Hao 《Nano Research》 SCIE EI CAS CSCD 2018年第4期1861-1872,共12页
The recent development of synthesis processes for three-dimensional (3D) graphene-based structures has tended to focus on continuous improvement of porous nanostructures, doping modification during thin-film fabrica... The recent development of synthesis processes for three-dimensional (3D) graphene-based structures has tended to focus on continuous improvement of porous nanostructures, doping modification during thin-film fabrication, and mechanisms for building 3D architectures. Here, we synthesized novel snowflake- like Si-O/Si-C nanostructures on 3D graphene/Cu foam by one-step low-pressure chemical vapor deposition (CVD). Through systematic micromorphological characterization, it was determined that the formation mechanism of the nanostructures involved the melting of the Cu foam surface and the subsequent condensation of the resulting vapor, 3D growth of graphene through catalysis in the presence of Cu, and finally , nudeation of the Si-O/Si-C nanostructure in the carbon-rich atmosphere. Thus, by tuning the growth temperature and duration, it should be possible to control the nucleation and evolution of such snowflake-like nanostructures with precision. Electrochemical measurements indicated that the snowflake-like nanostructures showed excellent performance as a material for energy storage. The highest specific capacitance of the Si-O/Si-C nanostructures was - 963.2 mF/cm2 at a scan rate of 1 mV/s. Further, even after 20,000 sequential cycles, the electrode retained 94.4% of its capacitance. 展开更多
关键词 snowflake-like nanostructures graphene chemical vapor deposition (CVD)
原文传递
Large-area chemical vapor deposition-grown monolayer graphene-wrapped silver nanowires for broad-spectrum and robust antimicrobial coating 被引量:4
5
作者 Chen Zhao Bing Deng +4 位作者 Guanchu Chen Bo Lei Hong Hua Hailin Peng Zhimin Yan 《Nano Research》 SCIE EI CAS CSCD 2016年第4期963-973,共11页
New types of antimicrobial systems are urgently needed owing to the emergence of pathogenic microbial strains that gain resistance to antibiotics commonly used in daily life and medical care. In this study we develope... New types of antimicrobial systems are urgently needed owing to the emergence of pathogenic microbial strains that gain resistance to antibiotics commonly used in daily life and medical care. In this study we developed for the first time a broad-spectrum and robust antimicrobial thin film coating based on large-area chemical vapor deposition (CVD)-grown graphene-wrapped silver nanowires (AgNWs). The antimicrobial graphene/AgNW hybrid coating can be applied on commerdal flexible transparent ethylene vinyl acetate/polyethylene terephthalate (EVA/PET) plastic films by a full roll-to-roll process. The graphene/AgNW hybrid coating showed broad-spectrum antimicrobial activity against Gram-negative (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus), and fungi (Candida albicans). This effect was attributed to a weaker microbial attachment to the ultra-smooth graphene film and the sterilization capacity of Ag+, which is sustainably released from the AgNWs and presumably enhanced by the electrochemical corrosion of AgNWs. Moreover, the robust antimicrobial activity of the graphene/AgNW coating was reinforced by AgNW encapsulation by graphene. Furthermore, the antimicrobial efficiency could be enhanced to -100% by water electrolysis by using the conductive graphene/AgNW coating as a cathode. We developed a transparent and flexible antimicrobial cover made of graphene/AgNW/EVA/PET and an antimicrobial denture coated by graphene/ AgNW, to show the potential applications of the antimicrobial materials. 展开更多
关键词 graphene silver nanowires antimicrobial chemical vapor deposition (CVD) electrochemical corrosion
原文传递
Safe growth of graphene from non-flammable gas mixtures via chemical vapor deposition
6
作者 Ying Feng Daniel J.Trainer +2 位作者 Hongshang Peng Ye Liu Ke Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第3期285-290,共6页
Chemical vapor deposition has emerged as the most promising technique for the growth of graphene.However, most reports of this technique use either flammable or explosive gases, which bring safety concerns and extra c... Chemical vapor deposition has emerged as the most promising technique for the growth of graphene.However, most reports of this technique use either flammable or explosive gases, which bring safety concerns and extra costs to manage risk factors. In this article, we demonstrate that continuous monolayer graphene can be synthesized via chemical vapor deposition technique on Cu foils using industrially safe gas mixtures. Important factors, including the appropriate ratio of hydrogen flow and carbon precursor,pressure, and growth time are considered to obtain graphene films. Optical measurements and electrical transport measurements indicate graphene films are with comparable quality to other reports. Such continuous large area graphene can be synthesized under non-flammable and non-explosive conditions, which opens a safe and economical method for mass production of graphene. It is thereby beneficial for integration of graphene into semiconductor electronics. 展开更多
关键词 graphene Safe growth Non-flammable chemical vapor deposition(CVD) Contact resistance Transfer length method
原文传递
Chloride-intercalated continuous chemical vapor deposited graphene film with discrete adlayers
7
作者 Qiao Chen Li Zhang Hongwei Zhu 《Nano Research》 SCIE EI CAS CSCD 2018年第1期440-448,共9页
Heteroatom doping can open the bandgap and increase the carrier density, thus extending the applications of graphene. Iron chloride (FeC13) intercalation has proven to be an efficient method for the heavy doping of ... Heteroatom doping can open the bandgap and increase the carrier density, thus extending the applications of graphene. Iron chloride (FeC13) intercalation has proven to be an efficient method for the heavy doping of graphene. In this study, we prepared continuous chemical vapor deposited graphene (CVD-G) consisting of hexagonal adlayer domains to study the FeC13 intercalation. The structure of the FeC13-treated CVD-G was easily characterized via atomic force microscopy because of the change in the interlayer distance. FeC13 crystals several nanometers thick were integrated with the graphene surface, and FeC13 layer flakes were intercalated between the CVD-G adlayers. The G-band position and two-dimensional band shape in the Raman spectra confirmed the intercalation of the FeC13 between the graphene layers. The FeCI~ intercalation increased the electrical conductivity of the CVD-G with a well-maintained transmittance, which could be beneficial for a sensitive photodetector. 展开更多
关键词 intercalation graphene chemical vapor deposition iron chloride
原文传递
Bioinspired synthesis of CVD graphene flakes and graphene-supported molybdenum sulfide catalysts for hydrogen evolution reaction 被引量:2
8
作者 Ke Chen Cong Li +6 位作者 Zhaolong Chen Liurong Shi Sathish Reddy Huan Meng Qingqing Ji Yanfeng Zhang Zhongfan Liu 《Nano Research》 SCIE EI CAS CSCD 2016年第1期249-259,共11页
Chemical vapor deposition has been the most-promising approach for growing large-area high-quality graphene films on planar substrates. Beyond the lateral growth, the synthesis of three-dimensional (3D) graphene has... Chemical vapor deposition has been the most-promising approach for growing large-area high-quality graphene films on planar substrates. Beyond the lateral growth, the synthesis of three-dimensional (3D) graphene has also been demon- strated recently on metal foams and insulating nanoparticles for exploring their applications in electrochemical electrodes. However, the existing approaches need either to prefabricate abundant starting substrates, or to construct porous frameworks for graphene growth. Herein, we report a straightforward, bioinspired strategy for growing large-quantity graphene flakes on cuttlebone substrates using the chemical vapor deposition (CVD) method. The separated graphene flakes from growth substrates are highly crystalline and layer-thickness controllable, outperforming the traditional chemically exfoliated graphene with few surface groups. Due to their inheriting the biomineral-derived morphology, the 3D graphene microstructures show a highly exposed and curved surface, which can load more MoSx(x ≥ 2) catalysts than other planar supports for highly efficient hydrogen generation. Briefly, the bioinspired approach is expected to achieve a reasonable balance between quality and quantity for graphene production, thus propelling its wide applications in energy storage and conversion devices. 展开更多
关键词 graphene bioinspired synthesis chemical vapor deposition three-dimensional hydrogen evolutionreaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部