期刊文献+
共找到251篇文章
< 1 2 13 >
每页显示 20 50 100
Effect of chemical vapor infiltration treatment on the wave-absorbing performance of carbon fiber/cement composites 被引量:4
1
作者 Kezhi Li Chuang Wang Hejun Li Lingjun Guo Jihua Lu 《Journal of University of Science and Technology Beijing》 CSCD 2008年第6期808-815,共8页
Short carbon fibers were treated at high temperatures around 1100℃ through chemical vapor infiltration technology. A thinner layer ofpyrocarbon was deposited on the fiber surface. The dispersion of carbon fibers in a... Short carbon fibers were treated at high temperatures around 1100℃ through chemical vapor infiltration technology. A thinner layer ofpyrocarbon was deposited on the fiber surface. The dispersion of carbon fibers in a cement matrix and the mechanical properties of carbon fiber/cement composites were investigated by scanning electron microscopy (SEM) and other tests. The reflec- tivity of electromagnetic waves by the composites was measured in the frequency range of 8.0-18 GHz for different carbon fiber contents of 0.2wt%, 0.4wt%, 0.6wt%, and 1.0wt%. The results show that the reflectivity tends to increase with the increase of fiber content above 0.4wt%. The minimum reflectivity is -19.3 dB and the composites exhibit wave-absorbing performances. After pyrocarbon is deposited on the fiber, all the refiectivity data are far greater. They are all above -10 dB and display mainly wave-reflecting performances. 展开更多
关键词 carbon fibers chemical vapor infiltration CEMENT REFLECTIVITY wave-absorbing property
下载PDF
Ablation properties of C/C composites with various needled preforms prepared by isothermal chemical vapor infiltration 被引量:5
2
作者 汤素芳 王道岭 +2 位作者 邓景屹 刘文川 杨柯 《Journal of Central South University of Technology》 EI 2007年第1期13-18,共6页
The ablation properties of C/C composites with four different needled preforms prepared by isothermal chemical vapor infiltration (ICVI), which are super-thin mat lay-up, 0°/90° weftless fabric lay-up, 0&#... The ablation properties of C/C composites with four different needled preforms prepared by isothermal chemical vapor infiltration (ICVI), which are super-thin mat lay-up, 0°/90° weftless fabric lay-up, 0°/45° weftless fabric lay-up and 0°/45° twill fabric lay-up, were quantitatively evaluated by performing the ablation tests with an engine torch. And their ablation discrepancies were analyzed according to the surface characteristic, porosity and thermal diffusivity. The results show that the 0°/45° weftless composite has a fiat eroded surface with no obvious macroscopic pits. Its thickness and mass erosion rates are decreased by about 46.8% and 34.8%, 25.0% and 27.5%, and 17.5% and 19.4% compared with those of the mat, the 0°/90° weftless and the 0°/45° twill composites, respectively. The ablation properties are mainly controlled by the thermo-chemical effect (oxidation), and a little by the thermo-mechanical effect (mechanical denudation). The needling fiber bundles play an important role in accelerating the ablation process and resulting in the heterogeneous ablation. 展开更多
关键词 C/C composites ablation fiber architecture isothermal chemical vapor infiltration thermal diffusivity
下载PDF
Effects of carrier gas on densification of porous carbon-carbon composites during chemical vapor infiltration 被引量:3
3
作者 汤中华 邹志强 熊杰 《Journal of Central South University of Technology》 2003年第1期7-12,共6页
The densification rate of C/C composites fabricated by directional flow thermal gradient chemical vapor infiltration process from C 3H 6, C 3H 6 N 2 and C 3H 6 H 2 was investigated respectively. The mechanism on the r... The densification rate of C/C composites fabricated by directional flow thermal gradient chemical vapor infiltration process from C 3H 6, C 3H 6 N 2 and C 3H 6 H 2 was investigated respectively. The mechanism on the role of carrier gas in chemical vapor infiltration was also discussed. The results shows that whether or not adding N 2 as carrier gas has little influences on the densification behavior of C/C composites with the controlled temperature, the partial pressure of hydrocarbon and the effective residence time of the gas phase remain constant. When the controlled temperature is not less than 1 173 K,using N 2 or H 2 as carrier gas makes pronounced differences in densifying of C/C composites. The average bulk density of C/C composites from C 3H 6 H 2 is eight to ten percent higher than that from C 3H 6 N 2. However, when the controlled temperature is not higher than 1 123 K,the densification rate of C/C composites from C 3H 6 H 2 is much lower than that from C 3H 6 N 2, which implies that effects of carrier gas on densification of C/C composites are closely related to the type of carrier gas and infiltration temperature. At higher temperature, using H 2 as carrier gas is favorable to the densification of C/C composites, while at lower temperature, hydrogen, acting as reactive gas, can inhibit the formation of pyrolytic carbon. 展开更多
关键词 C/C COMPOSITES CARRIER gas chemical vapor infiltration DENSIFICATION
下载PDF
A Numerical Study of Densification Behavior of Silicon Carbide Matrix Composites in Isothermal Chemical Vapor Infiltration 被引量:2
4
作者 GUAN Kang WU Jianqing CHENG Laifei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第6期1365-1371,共7页
We studied the characteristics of two-scale pore structure of preform in the deposition process and the mass transfer of reactant gas in dual-scale pores, and observed the physiochemical phenomenon associated with the... We studied the characteristics of two-scale pore structure of preform in the deposition process and the mass transfer of reactant gas in dual-scale pores, and observed the physiochemical phenomenon associated with the reaction. Thereby, we established mathematical models on two scales, respectively, preform and reactor. These models were used for the numerical simulation of the process of ceramic matrix composites densified by isothermal chemical vapor infiltration(ICVI). The models were used to carry out a systematic study on the influence of process conditions and the preform structure on the densification behaviors. The most important findings of our study are that the processing time could be reduced by about 50% without compromising the quality of the material, if the processing temperature is 950-1 000 ℃ for the first 70 hours and then raised to 1 100 ℃. 展开更多
关键词 isothermal chemical vapor infiltration ceramic matrix composites process parameters fiber preform structure densification behavior
下载PDF
FINITE DIFFERENCE MODEL FOR SIMULATION OF DENSIFYING CARBON-CARBON COMPOSITES BY CHEMICAL VAPOR INFILTRATIONP ROCESSES 被引量:1
5
作者 侯向辉 李贺军 +2 位作者 刘应楼 李克智 康沫狂 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1999年第1期36-42,共7页
A finite difference (FD) model is proposed to simulate the chemical vapor infiltration (CVI) processes for fabrication of carbon carbon composites. With iterative operation of many discrete values, the FD based mode... A finite difference (FD) model is proposed to simulate the chemical vapor infiltration (CVI) processes for fabrication of carbon carbon composites. With iterative operation of many discrete values, the FD based model can be used to describe and analyze the real, continuous densification processing quantitatively. Many densification characteristics of carbon carbon composites can be predicated by modeling. The prediction results can be compared with experiment value directly, which shows its good ability for practical application. Special verification experiments are designed with Iso thermal CVI processing and slender cylindroid unidirectional C/C composites are prepared to verify the accuracy of the model. The modeling curve of density versus infiltration time is in good agreement with experiment values. According to modeling analysis, the effects of infiltration temperature and fiber volume fraction on densification are also discussed preliminarily. The conclusion obtained also accords with experiment or results in other literature, further approving the accuracy of the FD based model. 展开更多
关键词 carbon carbon composites chemical vapor infiltration (cvi) finite different methods (FD)
下载PDF
Rapid chemical vapor infiltration of C/C composites 被引量:5
6
作者 张明瑜 王丽平 +1 位作者 黄启忠 柴立元 《中国有色金属学会会刊:英文版》 EI CSCD 2009年第6期1436-1439,共4页
With liquid petrol gas(LPG)as carbon source,carbon felt as porous perform and hydrogen as diluent,C/C composites were fast fabricated by using a multi-physics field chemical vapor infiltration(MFCVI)process in a self-... With liquid petrol gas(LPG)as carbon source,carbon felt as porous perform and hydrogen as diluent,C/C composites were fast fabricated by using a multi-physics field chemical vapor infiltration(MFCVI)process in a self-made furnace.A set of orthogonal experiments were carried out to optimize parameters in terms of indices of density and graphitization degree.The results show the optimal indices can be achieved under the conditions of temperature 650℃,LPGconcentration 80%,gas flux 60 mL/s, total pressure 20 kPa,infiltration time 15 h.The verification experiment proves the effectiveness of the orthogonal experiments. Under the optimal conditions,the graphitization degree of 75%and bulk density of 1.69 g/cm are achieved with a uniform density distribution.At the same time,a new structure is obtained. 展开更多
关键词 化学气相渗透 复合材料 石墨化程度 分布密度 正交试验 气体流量 实验证明 液体汽油
下载PDF
Design,preparation,and structure of particle preforms for Si_3N_(4(P))/Si_3N_4 radome composites prepared using chemical vapor infiltration process 被引量:1
7
作者 Yongsheng Liu Laifei Cheng Litong Zhang Yongdong Xu Yi Liu 《Journal of University of Science and Technology Beijing》 CSCD 2008年第1期62-66,共5页
A particle preform was designed and prepared by conglomerating and cold-pressed process, which was condensed by chemical vapor infiltration (CVI) process to fabricate silicon nitride particles reinforced silicon nit... A particle preform was designed and prepared by conglomerating and cold-pressed process, which was condensed by chemical vapor infiltration (CVI) process to fabricate silicon nitride particles reinforced silicon nitride composites. The conglomerations are of almost sphericity after conglomerated. There are large pores among the conglomerations and small pores within themselves in the preform according to the design and the test of pore size distribution. The pore size of the preform is characterized by a double-peak distribution. The pore size distribution is influenced by conglomeration size. Large pores among the conglomerations still exist after infiltrated Si3N4 matrix. The conglomerations, however, are very compact. The CVI Si3N4 looks like cauliflowershaped structure. 2008 University of Science and Technology Beijing. All rights reserved. 展开更多
关键词 silicon nitride particle preform DESIGN microstructure chemical vapor infiltration cvi
下载PDF
Densification mechanism of chemical vapor infiltration technology for carbon/carbon composites 被引量:6
8
作者 陈建勋 熊翔 +2 位作者 黄启忠 易茂中 黄伯云 《中国有色金属学会会刊:英文版》 EI CSCD 2007年第3期519-522,共4页
Carbon/carbon composites were fabricated using pressure-gradient chemical vapor infiltration(CVI) technology with propane (C3H6) as the carbon precursor gas and nitrogen (N2) as the carrier gas. The chemical process o... Carbon/carbon composites were fabricated using pressure-gradient chemical vapor infiltration(CVI) technology with propane (C3H6) as the carbon precursor gas and nitrogen (N2) as the carrier gas. The chemical process of deposition of pyrolytic carbon was deduced by analyzing the component of molecules in gas phase and observing the microstructure of deposition carbon. The results show that the process of deposition starts from the breakdown of C—C single bond of propene (C3H6), and forms two kinds of active groups in the heterogeneous gas phase reaction. Afterwards, these active groups form many stable bigger molecules and deposit on carbon fiber surface. At the same time, hydrogen atoms of the bigger molecules absorbed on carbon fiber surface are eliminated and the solid pyrolytic carbon matrix is formed in the heterogeneous reaction process. 展开更多
关键词 复合材料 化学 蒸汽 渗透性
下载PDF
Microstructure of carbon fiber preform and distribution of pyrolytic carbon by chemical vapor infiltration 被引量:5
9
作者 陈建勋 黄伯云 《中国有色金属学会会刊:英文版》 CSCD 2004年第4期733-737,共5页
The carbon/carbon composites were made by chemical vapor infiltration(CVI) with needled felt preform. The distribution of the pyrolytic carbon in the carbon fib er preform was studied by polarized light microscope(PLM... The carbon/carbon composites were made by chemical vapor infiltration(CVI) with needled felt preform. The distribution of the pyrolytic carbon in the carbon fib er preform was studied by polarized light microscope(PLM) and scanning electroni c microscope(SEM). The experimental results indicate that the amount of pyrolyti c carbon deposited on the surface of chopped carbon fiber is more than that on t he surface of long carbon fiber. The reason is the different porosity between th e layer of chopped carbon fiber and long carbon fiber. The carbon precursor gas which passes through the part of chopped carbon fibers decomposes and deposits o n the surface of chopped carbon fiber. The pyrolytic carbon on the surface of lo ng carbon fibers is produced by the carbon precursor gas diffusing from the chop ped fiber and the Z-d fiber. Uniform pore distribution and porosity in preform are necessary for producing C/C composites with high properties. 展开更多
关键词 碳/碳复合材料 热解碳 碳纤维 多孔材料 cvi
下载PDF
Oxidation mechanisms of C-SiC-TaC-C composites prepared by chemical vapor infiltration 被引量:2
10
作者 陈招科 熊翔 +4 位作者 黄伯云 李国栋 肖鹏 王雅雷 王琼 《中国有色金属学会会刊:英文版》 CSCD 2007年第A01期145-149,共5页
To improve the oxidation-resistance properties,SiC and TaC species were introduced in C/C composites by chemical vapor infiltration(CVI) methods. The oxidation-resistance properties of C-SiC-TaC-C composites were stud... To improve the oxidation-resistance properties,SiC and TaC species were introduced in C/C composites by chemical vapor infiltration(CVI) methods. The oxidation-resistance properties of C-SiC-TaC-C composites were studied by X-Ray diffractometry(XRD),JEOL-6360LV scanning electronic microscopy(SEM) and AdventurerTM electronic balance with precision of 0.1 mg. The results show that,1) the oxidation rate of the composites increases continuously with time at all experimental temperatures;2) The oxidation rate increases with temperature within 700-1 100 ℃,slowly in 700-800 ℃,acutely in 800-1 100 ℃;it reaches a maximum value at 1 100 ℃,then decreases within 1 100-1 400 ℃;3) The relationship curve of oxidation rate with temperature can be divided into three regions. The oxidation rate is controlled by reactivity in region Ⅰ,the mixed effects of reactivity and gas diffusion in region Ⅱ,gas phase diffusion in region Ⅲ;4) The composites exhibit a higher oxidation onset temperature in low temperature region and a lower oxidation rate at high temperature due to the oxidation of TaC to(Ta,O) and the formation of the dense SiO2-Ta2O5 oxide layer respectively. With the addition of SiC/TaC species,the oxidation-resistant properties of C/C composites can be improved effectively. 展开更多
关键词 碳化合物 化学特性 抗氧化性 合金
下载PDF
Modeling of gas phase diffusion transport during chemical vapor infiltration process 被引量:1
11
作者 肖鹏 李娣 +1 位作者 徐永东 黄伯云 《中国有色金属学会会刊:英文版》 CSCD 2002年第3期429-432,共4页
In order to improve the uniformity of both the concentration of gaseous reagent and the deposition of matrix within micro pores during the chemical vapor infiltration (CVI) process, a calculation modeling of gas phase... In order to improve the uniformity of both the concentration of gaseous reagent and the deposition of matrix within micro pores during the chemical vapor infiltration (CVI) process, a calculation modeling of gas phase diffusion transport within micro pores was established. Taken CH 3SiCl 3 as precursor for depositing SiC as example, the diffusion coefficient, decomposing reaction rate, concentration within the reactor, and concentration distributing profiling of MTS within micro pore were accounted, respectively. The results indicate that, increasing the ratio of diffusion coefficient to decomposition rate constant of precursor MTS is propitious to decrease the densification gradient of parts, and decreasing the aspect ratio (L/D) of micro pore is favorable to make the concentration uniform within pores. 展开更多
关键词 cvi 建模 扩散 复合材料 气相镀
下载PDF
GROWTH CHARACTERSAND MODEL OF PYROLYTIC CARBON IN CHEMICAL VAPOR INFILTRATION PROCESS
12
作者 侯向辉 李贺军 +2 位作者 张守阳 陈轶希 沈健 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2000年第2期112-117,共6页
Chemical Vapor Infiltration (CVI) processes are the essential techniques for fabrication of high performance carbon carbon composites. Based on the polarized light and scanning electron analysis, the authors study th... Chemical Vapor Infiltration (CVI) processes are the essential techniques for fabrication of high performance carbon carbon composites. Based on the polarized light and scanning electron analysis, the authors study the micro morphology and texture characteristics of pyrolytic carbon deposited in CVI process, as well as the growth behavior of pyrolytic carbon. The research shows that Rough Laminar (RL) texture has the hierarchical and self similar structural features, which reflects the stage growth and self similar behavior during the growth course of pyrolytic carbon. According to the two growth features, a laminated growth model of pyrolytic carbon is proposed with the concept of Cone Growth Units (CGU). The laminated growth model can provide a fine description for the growth course of RL pyrolytic carbon. The model indicates that formation, developing and combination of local high order structures (such as CGU structures) are the essential factors for the growth of RL texture. Smooth Laminar (SL) texture and ISO carbon come into being with long range orderliness and isotropy structure respectively, which no local high orderliness intermediate involves in. 展开更多
关键词 pyrolytic carbon chemical vapor infiltration carbon carbon composites
下载PDF
Comparative modeling of gas transport in isothermal chemical vapor infiltration process of C/SiC composites
13
作者 魏玺 成来飞 +2 位作者 张立同 徐永东 曾庆丰 《中国有色金属学会会刊:英文版》 CSCD 2006年第B02期608-612,共5页
Two comparative models taking into account of momentum, energy and mass transport coupled with chemical reaction kinetics were proposed to simulate gas transport in isothermal CVI reactor for fabrication of C/SiC comp... Two comparative models taking into account of momentum, energy and mass transport coupled with chemical reaction kinetics were proposed to simulate gas transport in isothermal CVI reactor for fabrication of C/SiC composites. Convection in preform was neglected in one model where momentum transport in preform is neglected and mass transport in preform is dominated by diffusion. Whereas convection in preform was taken into account in the other model where momentum transport in preform is represented by BRINKMAN equations and mass transport in preform includes both diffusion and convection. The integrated models were solved by finite element method. The calculation results show that convection in preform have negligible effect on both velocity distribution and concentration distribution. The difference between MTS molarities in preform of the two models is less than 5×10-5, which indicates that ignorance of convection in preform is reasonable and acceptable for numerical simulation of ICVI process of C/SiC composites. 展开更多
关键词 碳纤维增强碳化硅复合材料 等温化学汽相浸渗 气体输运 比较模型 传质
下载PDF
CVI-RMI联用法制备高性能C/(C-SiC)陶瓷基刹车材料 被引量:1
14
作者 范丽君 《化工设计通讯》 CAS 2024年第5期105-106,123,共3页
采用化学气相渗透-反应熔体渗透(CVI-RMI)联用法制备C/(C-SiC)陶瓷基复合材料,并对材料的微观结构和力学性能、热学性能、摩擦磨损性能进行研究。结果表明:CVI化学气相渗透最佳C/C多孔坯体密度为1.40~1.55 g/cm^(3),RMI熔融渗硅最佳温度... 采用化学气相渗透-反应熔体渗透(CVI-RMI)联用法制备C/(C-SiC)陶瓷基复合材料,并对材料的微观结构和力学性能、热学性能、摩擦磨损性能进行研究。结果表明:CVI化学气相渗透最佳C/C多孔坯体密度为1.40~1.55 g/cm^(3),RMI熔融渗硅最佳温度为1650℃,制备的C/(C-SiC)复合材料密度2.10 g/cm^(3)。本方法制备的C/(C-SiC)复合材料力学性能优于采用前驱体浸渍裂解(PIP)法制备的复合材料,且导热性能优异,满足高温环境使用要求。研究发现C/(C-SiC)复合材料的摩擦系数适中,力矩曲线平稳,湿态下摩擦性能无衰减,静摩擦系数高满足低速刹车要求,且磨损量小。 展开更多
关键词 cvi化学气相沉积 RMI反应熔体渗透 C/(C-SiC)陶瓷基刹车材料
下载PDF
轴对称C/C复合材料件等温CVI过程的数值模拟研究 被引量:13
15
作者 姜开宇 李贺军 +1 位作者 侯向辉 李克智 《西北工业大学学报》 EI CAS CSCD 北大核心 2000年第4期665-668,共4页
根据轴对称 C/C复合材料的结构特征及 CVI工艺的特点 ,建立了几何结构模型和动力学模型 ,并利用该模型对其 CVI过程进行了模拟与分析。
关键词 轴对称 碳碳复合材料 等温 cvi 数学模型
下载PDF
CVI法制备连续纤维增韧陶瓷基复合材料 被引量:19
16
作者 徐永东 张立同 +1 位作者 成来飞 韩金探 《硅酸盐学报》 EI CAS CSCD 北大核心 1995年第3期319-326,共8页
在连续纤维增韧陶瓷基复合材料制备领域,CVI法是目前已经实用并成为商品化的方法。这种方法能在较低温度下制备出形状复杂、近尺寸和纤维体积分数高的陶制基复合材料,并能实现微观尺度上的成分设计,CVI的最基本问题是物质的传... 在连续纤维增韧陶瓷基复合材料制备领域,CVI法是目前已经实用并成为商品化的方法。这种方法能在较低温度下制备出形状复杂、近尺寸和纤维体积分数高的陶制基复合材料,并能实现微观尺度上的成分设计,CVI的最基本问题是物质的传输和化学反应动力学。纤维和基体间的界面,是影响复合材料力学性能的关键。本文旨在从CVI的基本理论、方法和影响复合材料力学性能的因素出发,对国内外有关研究的水平及现状进行了分析。 展开更多
关键词 陶瓷 复合材料 复合陶瓷 cvi 力学性能
下载PDF
FCVI制备C/C复合材料工艺探索 被引量:8
17
作者 张守阳 李贺军 +1 位作者 侯向辉 孙乐民 《材料研究学报》 EI CAS CSCD 北大核心 2000年第4期424-430,共7页
强制流动热梯度化学气相渗透(FCVI)作为一种制备碳基与陶瓷基复合材料的新工艺,克服了传统CVI中气体扩散传输与预制体渗透性的限制,可在短时间内制备出密度均匀、性能优良的制件,已受到日益广泛的关注本文采用化学反应动力... 强制流动热梯度化学气相渗透(FCVI)作为一种制备碳基与陶瓷基复合材料的新工艺,克服了传统CVI中气体扩散传输与预制体渗透性的限制,可在短时间内制备出密度均匀、性能优良的制件,已受到日益广泛的关注本文采用化学反应动力学原理分析FCVI的工艺过程,从理论上论述了在FCVI的各阶段中实现均匀沉积和分层沉积的可能性。 展开更多
关键词 碳/碳复合材料 化学气相渗透 Fcvi 制备工艺
下载PDF
CVI制备C/Si_3N_4复合材料及其表征 被引量:6
18
作者 刘永胜 成来飞 +2 位作者 张立同 徐永东 刘谊 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2005年第5期1208-1214,共7页
以SICl4-NH3-H2为反应体系,采用化学气相渗透法CVI)制备C/Si3N4复合材料.渗透产物的能谱和X射线衍射表明渗透产物为非晶态Si3N4,经1350℃真空热处理后,产物仍然为非晶态Si3N4;经1450℃真空热处理后,产物已经发生晶型转变,由非晶态转变... 以SICl4-NH3-H2为反应体系,采用化学气相渗透法CVI)制备C/Si3N4复合材料.渗透产物的能谱和X射线衍射表明渗透产物为非晶态Si3N4,经1350℃真空热处理后,产物仍然为非晶态Si3N4;经1450℃真空热处理后,产物已经发生晶型转变,由非晶态转变为晶态的α-Si3N4和β-Si3N4.渗透温度、渗透时间、气体流量对试样致密化、增重及微观结构的影响研究表明渗透温度为900℃、SiCl4流量为30mL/min、H2流量为100mL/min、NH3流量为80mL/min、渗透时间120h、系统压力1000Pa时,气体渗透进入碳布预制体后,在预制体内反应均匀,制备的复合材料较均匀. 展开更多
关键词 化学气相渗透(cvi) C/Si3N4复合材料 微观结构 工艺参数
下载PDF
压力梯度CVI工艺制备2D炭/炭复合材料的弯曲断裂行为 被引量:18
19
作者 薛辉 李贺军 +2 位作者 侯向辉 李克智 韩红梅 《新型炭材料》 SCIE EI CAS CSCD 2004年第4期289-292,共4页
 采用三点弯曲方法测试了压力梯度化学气相浸渗法(CVI)工艺制备的2D炭 炭复合材料的性能,借助于扫描电镜研究了断口和界面形貌,分析了密度和纤维基体界面对材料力学性能的影响。结果表明,随试样密度增加,2D炭 炭复合材料的断裂模式从...  采用三点弯曲方法测试了压力梯度化学气相浸渗法(CVI)工艺制备的2D炭 炭复合材料的性能,借助于扫描电镜研究了断口和界面形貌,分析了密度和纤维基体界面对材料力学性能的影响。结果表明,随试样密度增加,2D炭 炭复合材料的断裂模式从剪切断裂、层间分离向拉伸断裂转变。材料密度对弯曲强度和模量影响很大,但对弯曲挠度基本没有影响。揭示了影响2D炭 炭复合材料弯曲挠度的关键因素是纤维与热解炭基体界面的结合情况。 展开更多
关键词 炭/炭复合材料 化学气相浸渗 弯曲性能 压力梯度 弯曲挠度
下载PDF
工艺参数对CVI-TaC沉积速率的影响 被引量:10
20
作者 陈招科 熊翔 +4 位作者 李国栋 肖鹏 张红波 尹健 黄伯云 《中国有色金属学报》 EI CAS CSCD 北大核心 2006年第12期2047-2053,共7页
利用TaCl5-Ar-C3H6-H2反应体系,采用化学气相渗透(CVI)法在炭毡中沉积TaC,并研究了CVI工艺参数如气体流速、滞留时间、沉积温度、沉积压力和H2的加入等对碳化钽在炭毡中沉积速率(用炭毡质量分数的增加来表示)的影响。研究表明:CVI-TaC... 利用TaCl5-Ar-C3H6-H2反应体系,采用化学气相渗透(CVI)法在炭毡中沉积TaC,并研究了CVI工艺参数如气体流速、滞留时间、沉积温度、沉积压力和H2的加入等对碳化钽在炭毡中沉积速率(用炭毡质量分数的增加来表示)的影响。研究表明:CVI-TaC受表面反应控制的最大气体流速为40 cm/s,最小滞留时间为1.2 s;沉积速率与沉积温度之间的关系不符合Arrhenius方程,沉积速率随沉积温度的升高先增加后减小,在950℃时达到最大值;在1 000℃时,CVI过程受孔隙扩散所控制;沉积速率随沉积压力的升高以及H2的加入而急剧增加。 展开更多
关键词 TAC 炭毡 化学气相渗透 扩散 沉积速率
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部