Salvaged cow horns from slaughterhouses have been transformed into fine particles for a physical characterization that has led us to determine the humidity rate (2.34% ± 0.054%), the actual density situated betwe...Salvaged cow horns from slaughterhouses have been transformed into fine particles for a physical characterization that has led us to determine the humidity rate (2.34% ± 0.054%), the actual density situated between 0.586 g/cm<sup>3</sup> and 0.732 g/cm<sup>3</sup>, the swelling rate (12%), and one chemical characterization that permitted us to determine the rate of dry matters (97.05%), of mineral matters (2.5%), of protein matters (94.52%). From these weak values, it can easily be seen that cow horn case doesn’t absorb much water and improve the mechanical characteristics of the composite;the high rate of protein shows that keratin which is the structural molecule favors its gripping as reinforcing element in the manufacturing of composite materials.展开更多
An efficient interface modification is introduced to improve the performance of polymeric thin film transistors. This efficient interface modification is first achieved by 4-fluorothiophenol(4-FTP) self-assembled mo...An efficient interface modification is introduced to improve the performance of polymeric thin film transistors. This efficient interface modification is first achieved by 4-fluorothiophenol(4-FTP) self-assembled monolayers(SAM) to chemically treat the silver source–drain(S/D) contacts while the silicon oxide(SiO2) dielectric interface is further primed by either hexamethyldisilazane(HMDS) or octyltrichlorosilane(OTS-C8). Results show that contact resistance is the dominant factor that limits the field effect mobility of the PTDPPTFT4 transistors. With proper surface modification applied to both the dielectric surface and the bottom contacts, the field effect mobilities of the bottom-gate bottom-contact PTDPPTFT4 transistors were significantly improved from 0.15 cm^2·V^-1·s^-1 to 0.91 cm^2·V^-1·s^-1.展开更多
When colloidal silver particles were chemically deposited onto polymer film as an over-coating layer, surface-enhanced Raman scattering (SERS) spectra could be collected for the surface analysis. SERS measurements of ...When colloidal silver particles were chemically deposited onto polymer film as an over-coating layer, surface-enhanced Raman scattering (SERS) spectra could be collected for the surface analysis. SERS measurements of liquid crystal film were successfully performed without disturbing the surface morphology.展开更多
In view of the challenges posed by the nature of expansive soil to structural stability which makes it necessary in some cases to improve the soils before structures can be placed on them, there is a need to investiga...In view of the challenges posed by the nature of expansive soil to structural stability which makes it necessary in some cases to improve the soils before structures can be placed on them, there is a need to investigate modern trends in ground improvement techniques in order to determine their reliability. This study is thus aimed at using the reliability based approach to analyze the use of polyvinyl alcohol (PVA) in combination with 1,2,3,4 Butane-tetracarboxylic acid (BTCA) for ground improvement. This study is necessary given the challenges posed by the nature of expansive soil to structural stability which makes it necessary in some cases to improve the soils before structures can be placed on them. Simplex lattice design was employed to build the design of experiment before experimental investigations were carried out on the PVA-BTCA treated soft soils. Reliability indices were computed on the basis of the 28<sup>th</sup> day unconfined compressive strength (UCS) of the treated soil. Reliability index models were developed using the Scheffe’s technique and optimized using excel solver. From analysis of results, reliability model developed proved adequate at 5% level of significance. PVA-BTCA combination provided a potential reliability or probability of success of 99.936% at components combination of: 98.4256% for soil, 1.2352% for PVA, 0.3392% for BTCA and 15.9934% for water. It was therefore recommended that financial implications of using PVA-BTCA for stabilization be compared to those of conventional methods, in order to compare their performance-cost ratio.展开更多
Abrasive is the one of key influencing factors during chemical mechanical polishing(CMP) process. Currently, α-Alumina (α-Al2O3) particle, as a kind of abrasive, has been widely used in CMP slurries, but their h...Abrasive is the one of key influencing factors during chemical mechanical polishing(CMP) process. Currently, α-Alumina (α-Al2O3) particle, as a kind of abrasive, has been widely used in CMP slurries, but their high hardness and poor dispersion stability often lead to more surface defects. After being polished with composite particles, the surface defects of work pieces decrease obviously. So the composite particles as abrasives in slurry have been paid more attention. In order to reduce defect caused by pure α-Al2O3 abrasive, α-alumina-g-polystyrene sulfonic acid (α-Al2O3-g-PSS) composite abrasive was prepared by surface graft polymerization. The composition, structure and morphology of the product were characterized by Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS), time-of-flight secondary ion mass spectroscopy(TOF-SIMS), and scanning electron microscopy(SEM), respectively. The results show that polystyrene sulfonic acid grafts onto α-Al2O3, and has well dispersibility. Then, the chemical mechanical polishing performances of the composite abrasive on glass substrate were investigated with a SPEEDFAM-16B-4M CMP machine. Atomic force microscopy(AFM) images indicate that the average roughness of the polished glass substrate surface can be decreased from 0.835 nm for pure α-Al2O3 abrasive to 0.583 nm for prepared α-Al2O3-g-PSS core-shell abrasive. The research provides a new and effect way to improve the surface qualities during CMP.展开更多
In enhanced oil recovery,different chemicalmethods utilization improves hydrocarbon recovery due to their fascinating abilities to alter some critical parameters in porous media,such as mobility control,the interactio...In enhanced oil recovery,different chemicalmethods utilization improves hydrocarbon recovery due to their fascinating abilities to alter some critical parameters in porous media,such as mobility control,the interaction between fluid to fluid,and fluid to rock surface.For decades the use of surfactant and polymer flooding has been used as tertiary recovery methods.In the current research,the inclusion of nanomaterials in enhanced oil recovery injection fluids solely or in the presence of other chemicals has got colossal interest.The emphasis of this review is on the applicability of nanofluids in the chemical enhanced oil recovery.The responsiblemechanisms are an increment in the viscosity of injection fluid,decrement in oil viscosity,reduction in interfacial and surface tension,and alteration of wettability in the rock formation.In this review,important parameters are presented,which may affect the desired behavior of nanoparticles,and the drawbacks of nanofluid and polymer flooding and the need for a combination of nanoparticles with the polymer are discussed.Due to the lack of literature in defining the mechanism of nanofluid in a reservoir,this paper covers majorly all the previous work done on the application of nanoparticles in chemical enhanced oil recovery at home conditions.Finally,the problems associatedwith the nano-enhanced oil recovery are outlined,and the research gap is identified,which must be addressed to implement polymeric nanofluids in chemical enhanced oil recovery.展开更多
Chemically modified ordered mesoporous carbon CMK-3 materials were prepared by means of an easy wet-oxidative method in 2 mol/L nitric acid aqueous solution. A large amount of oxygen-containing functional groups were ...Chemically modified ordered mesoporous carbon CMK-3 materials were prepared by means of an easy wet-oxidative method in 2 mol/L nitric acid aqueous solution. A large amount of oxygen-containing functional groups were introduced onto the CMK-3 surface. Modified CMK-3(m-CMK-3) and aniline monomer were polymerized via an in situ chemical oxidative polymerization method. Morphological characterizations of m-CMK-3/PANI (polyaniline) composites were carried out via field emission scanning electron microscopy(SEM). Their electrochemical properties were investigated with cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The m-CMK-3/PANI composites have excellent properties in capacitance, and the highest specific capacitance(SC) value was up to 489 F/g, suggesting their potential application in the electrode material for electrochemical capacitors.展开更多
We report chemical vapor phase polymerization(VPP) deposition of poly(3,4-ethylenedioxythiophene)(PEDOT) and PEDOT/graphene on porous dielectric tantalum pentoxide(Ta_2O_5) surface as cathode films for solid tantalum ...We report chemical vapor phase polymerization(VPP) deposition of poly(3,4-ethylenedioxythiophene)(PEDOT) and PEDOT/graphene on porous dielectric tantalum pentoxide(Ta_2O_5) surface as cathode films for solid tantalum electrolyte capacitors. The modified oxidant/oxidant-graphene films were first deposited on Ta_2O_5 by dip-coating, and VPP process was subsequently utilized to transfer oxidant/oxidant-graphene into PEDOT/PEDOT-graphene films. The SEM images showed PEDOT/PEDOT-graphene films was successfully constructed on porous Ta_2O_5 surface through VPP deposition, and a solid tantalum electrolyte capacitor with conducting polymer-graphene nano-composites as cathode films was constructed. The high conductivity nature of PEDOT-graphene leads to resistance decrease of cathode films and lower contact resistance between PEDOT/graphene and carbon paste. This nano-composite cathode films based capacitor showed ultralow equivalent series resistance(ESR) ca. 12 m? and exhibited excellent capacitance-frequency performance, which can keep 82% of initial capacitance at 500 KHz. The investigation on leakage current revealed that the device encapsulation process has no influence on capacitor leakage current, indicating the excellent mechanical strength of PEDOT/PEDOT-gaphene films. This high conductivity and mechanical strength of graphene-based polymer films shows promising future for electrode materials such as capacitors, organic solar cells and electrochemical energy storage devices.展开更多
Scrap vulcanized rubber is amongst a bigger waste polymers. It does not decompose easily owing to its cross linked structure. Modification of scrap tires powder by the grafting with 2-acrylamido-2-methylpropanesulfoni...Scrap vulcanized rubber is amongst a bigger waste polymers. It does not decompose easily owing to its cross linked structure. Modification of scrap tires powder by the grafting with 2-acrylamido-2-methylpropanesulfonic acid (AMPS) is described. The grafting is achieved through free radical initiation. The effects of different amount of monomer and initiator were examined. Also the influence of reaction time and temperature were investigated. The grafted waste rubber was characterized by FT/IR, SEM and DSC measurements. The proposed mechanism of the grafting reaction is discussed. From DSC and SEM studies of WR-g-AMPS compared with PAMPS and WR, the results show that the particle size and crystallinity were enhanced for the grafted copolymers. The obtained modified scraped tires will used as an ion exchanger for the future applications.展开更多
This work focuses on the development of high temperature polymer electrolyte membranes(HT-PEMs)as key materials for HT-PEM fuel cells(HT-PEMFCs).Recognizing the challenges associated with the phosphoric acid(PA) doped...This work focuses on the development of high temperature polymer electrolyte membranes(HT-PEMs)as key materials for HT-PEM fuel cells(HT-PEMFCs).Recognizing the challenges associated with the phosphoric acid(PA) doped polybenzimidazole(PBI) membranes,including the use of carcinogenic monomers and complex synthesis procedures,this study aims to develop more cost-effective,readily synthesized,and high-performance alternatives.A series of superacid-catalyzed polyhydroxyalkylation reactions have been carefully designed between p-terphenyl and aldehydes bearing imidazole moieties,resulting in a new class of HT-PEMs.It is found that the chemical structure of aldehyde-substituted N-heterocycles significantly impacts the polymerization reaction.Specifically,the use of 1-methyl-2-imidazole-formaldehyde and 1 H-imidazole-4-formaldehyde monomers leads to the formation of high-viscosity,rigid,and ether-free polymers,denoted as PTIm-a and PTIm-b.Membranes fabricated from these polymers,due to their pendent imidazole groups,exhibit an exceptional capacity for PA absorption.Notably,PTIm-a,carrying methylimidazole moieties,demonstrates a superior chemical stability by maintaining morphology and structural stability during 350 h of Fenton testing.After being immersed in 75 wt% PA at 40℃,the PTIm-a membrane reaches a PA content of 152%,maintains a good tensile strength of 13.6 MPa,and exhibits a moderate conductivity of 50.2 mS cm^(-1) at 180℃.Under H_(2)/O_(2) operational conditions,a single cell based on the PTIm-a membrane attains a peak power density of 732 mW cm^(-2) at 180℃ without backpressure.Furthermore,the membrane demonstrates stable cycle stability over 173 h within 18 days at a current density of 200 mA cm^(-2),indicating its potential for practical application in HT-PEMFCs.This work highlights innovative strategies for the synthesis of advanced HT-PEMs,offering significant improvements in membrane properties and fuel cell performance,thus expanding the horizons of HT-PEMFC technology.展开更多
Polymer gels have been accepted as a useful tool to address many sealing operations such as drilling and completion,well stimulation,wellbore integrity,water and gas shutoff,etc.Previously,we developed an ultra-high s...Polymer gels have been accepted as a useful tool to address many sealing operations such as drilling and completion,well stimulation,wellbore integrity,water and gas shutoff,etc.Previously,we developed an ultra-high strength gel(USGel)for medium to ultra-low temperature reservoirs.However,the removal of USGel is a difficult problem for most temporary plugging operations.This paper first provides new insights into the mechanism of USGel,where multistage network structure and physical entanglement are the main reasons for USGel possessing ultra-high strength.Then the effects of acid breakers,encapsulated breakers,and oxidation breakers(including H_(2)O_(2),Na_(2)S_(2)O_(8),Ca(ClO)_(2),H_(2)O_(2)+NaOH,Na_(2)S_(2)O_(8)+NaOH,and Ca(ClO)_(2)+NaOH)were evaluated.The effects of component concentration and temperature on the breaking solution were studied,and the corrosion performance,physical simulation and formation damage tests of the breaking solution were carried out.The final formulation of 2%-4%NaOH+4.5%-6%H_(2)O_(2) breaking solution was determined,which can make USGel completely turn into water at 35e105C.The combinations of“acid t breaking solution”,“acid+encapsulated breaker”and“encapsulated breaker+breaking solution”were evaluated for breaking effect.The acid gradually reduced the volume of USGel,which increased the contact area between breaking solution and USGel,and the effect of“4%acid+breaking solution”was 23 times higher than that of breaking solution alone at 35C.However,the acid significantly reduced the strength of USGel.This paper provides new insights into the breaking of high-strength gels with complex network structures.展开更多
India is currently producing crude oil from matured fields because of insufficient discoveries of new fields.Therefore,in order to control the energy crisis in India,enhanced oil recovery(EOR)techniques are required t...India is currently producing crude oil from matured fields because of insufficient discoveries of new fields.Therefore,in order to control the energy crisis in India,enhanced oil recovery(EOR)techniques are required to reduce the import of crude from the OPEC(Organization of the Petroleum Exporting Countries).This review mentions chemical EOR techniques(polymers,surfactants,alkali,nanoparticles,and combined alkali-surfactant-polymer flooding)and operations in India.Chemical EOR methods are one of the most efficient methods for oil displacement.The efficiency is enhanced by interfacial tension(IFT)reduction using surfactants and alkali,and mobility control of injected water is done by adding a polymer to increase the volumetric sweep efficiency.This paper also reviews the current trend of chemical EOR,prospects of chemical EOR in Indian oilfields,the development of chemical EOR in India with their challenges raising with economics,and screening criteria for chemical EOR implementation on the field scale.Furthermore,the review gives a brief idea about chemical EOR implementation in Indian oilfields in future prospects to increase the additional oil recovery from existing depleted fields to reduce the import of crude oil.The outcome of this review depicts all chemical EOR operations and recovery rates both at the laboratory scale and field scale around the country.The additional recovery rates are compared from various chemical EOR methods like conventional chemical flooding methods and conventional chemicals combined with nanoparticles on a laboratory scale.The development of chemical EOR in the past few decades and the EOR policy given by the government of India has been mentioned in this review.The analysis provides an idea about enhanced recovery screening and implementation of chemical EOR methods in existing fields will significantly reduce the energy crisis in India.展开更多
Polymers of N-phenylanthranilic acid were obtained by oxidative polymerization in the heterophase system in the presence of chloroform. Effect of synthesis conditions on the chemical structure of the polymers was stud...Polymers of N-phenylanthranilic acid were obtained by oxidative polymerization in the heterophase system in the presence of chloroform. Effect of synthesis conditions on the chemical structure of the polymers was studied. It was found that the growth of polymeric chain occurs via C-C joining into 2- and 4-positions of phenyl rings with respect to nitrogen. Thermal stability of poly-N-phenylanthranilic acid was studied.展开更多
In this paper, the content of water glass before and after adding modifying agent was measured by Trimethylsilyl-gas-chromatography. The experimental results showed that different modulus of water glass could generate...In this paper, the content of water glass before and after adding modifying agent was measured by Trimethylsilyl-gas-chromatography. The experimental results showed that different modulus of water glass could generate different content of mono-silicate acid and oligomeric silicate acid in water glass. After a period of storage, different modulus of water glass led to decrease of silicate content at different levels. Because higher content of Na<sub>2</sub>O in water glass tended to incur the alkaline polymerization, the occurrence of depolymerization of silicate species would lead to an increase of oligomeric silicate species, resulting in a drawback of silicate species content after a period of storage. And contrary to that, lower content of Na<sub>2</sub>O in water glass tended to incur the acidic polymerization. When the modifying agent was added to the newly made water glass, the amount of mono-silicate acid and oligomeric silicate acid also decreased. In modified water glass, the change of each silicate acid species was less than that in unmodified water glass. These results showed that the modifying agent retarded the aging of water glass. It had remarkable significance on the theory and practical application of water glass chemistry.展开更多
Organic mechanophores have been widely adopted for polymer mechanotransduction.However,most examples of polymer mechanotransduction inevitably experience macromolecular chain rupture,and few of them mimic mussel’s me...Organic mechanophores have been widely adopted for polymer mechanotransduction.However,most examples of polymer mechanotransduction inevitably experience macromolecular chain rupture,and few of them mimic mussel’s mechanochemical regeneration,a mechanically mediated process from functional units to functional materials in a controlled manner.In this paper,inorganic mechanoluminescent(ML)materials composed of CaZnOS-ZnS-SrZnOS:Mn2+were used as a mechanotransducer since it features both piezoelectricity and mechanolunimescence.The utilization of ML materials in polymerization enables both mechanochemically controlled radical polymerization and the synthesis of ML polymer composites.This procedure features a mechanochemically controlled manner for the design and synthesis of diverse mechanoresponsive polymer composites.展开更多
The continuous evolution of chip manufacturing demands the development of materials with ultra-low dielectric constants.With advantageous dielectric and mechanical properties,initiated chemical vapor deposited(iCVD)po...The continuous evolution of chip manufacturing demands the development of materials with ultra-low dielectric constants.With advantageous dielectric and mechanical properties,initiated chemical vapor deposited(iCVD)poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane)(pV3D3)emerges as a promising candidate.However,previous works have not explored etching for this cyclosiloxane polymer thin film,which is indispensable for potential applications to the back-end-of-line fabrication.Here,we developed an etching process utilizing O2/Ar remote plasma for cyclic removal of iCVD pV3D3 thin film at sub-nanometer scale.We employed in-situ quartz crystal microbalance to investigate the process parameters including the plasma power,plasma duration and O2 flow rate.X-ray photoelectron spectroscopy and cross-sectional microscopy reveal the formation of an oxidized skin layer during the etching process.This skin layer further substantiates an etching mechanism driven by surface oxidation and sputtering.Additionally,this oxidized skin layer leads to improved elastic modulus and hardness and acts as a barrier layer for protecting the bottom cyclosiloxane polymer from further oxidation.展开更多
Two new coordination polymers,[Ni(Hpdc)(bib)(H_(2)O)]_(n)(1)and{[Ni(bib)_(3)](ClO_(4))_(2)}_(n)(2),were prepared by mixing Ni^(2+),3,5⁃pyrazoledicarboxylic acid(H3pdc)/p⁃nitrobenzoic acid and 1,4⁃bis(imidazol⁃1⁃ylmeth...Two new coordination polymers,[Ni(Hpdc)(bib)(H_(2)O)]_(n)(1)and{[Ni(bib)_(3)](ClO_(4))_(2)}_(n)(2),were prepared by mixing Ni^(2+),3,5⁃pyrazoledicarboxylic acid(H3pdc)/p⁃nitrobenzoic acid and 1,4⁃bis(imidazol⁃1⁃ylmethyl)butane(bib)by a hydrothermal method,respectively.X⁃ray crystallography reveals a 2D network constructed by six⁃coordinated Ni(Ⅱ)centers,bib,and Hpdc2-ligands in complex 1,while a 2D network is built by Ni(Ⅱ)and bib ligands in 2.Furthermore,the quantum⁃chemical calculations have been performed on‘molecular fragments’extracted from the crystal structure of 1 using the PBE0/LANL2DZ method in Gaussian 16 and the VASP program.CCDC:2343794,1;2343798,2.展开更多
A series of spherical activated carbons(SACs)with different pore structures were prepared from chloromethylated polydivinylbenzene by ZnCl_2 activation.The effects of activation temperature and retention time on the y...A series of spherical activated carbons(SACs)with different pore structures were prepared from chloromethylated polydivinylbenzene by ZnCl_2 activation.The effects of activation temperature and retention time on the yield and textural properties of the resulting SACs were studied.All the SACs are generated with high yield of above 65% and exhibit relatively high mesopore fraction(me%)of 35.7%-43.6% compared with conventional activated carbons.The sample zlc28 prepared at 800℃for 2 h has the largest BET surf...展开更多
Organic semiconductors,especially polymer semiconductors,have attracted extensive attention as organic thermoelectric materials due to their capabilities for flexibility,low-cost fabrication,solution processability an...Organic semiconductors,especially polymer semiconductors,have attracted extensive attention as organic thermoelectric materials due to their capabilities for flexibility,low-cost fabrication,solution processability and low thermal conductivity.However,it is challenging to obtain high-performance organic thermoelectric materials because of the low intrinsic carrier concentration of organic semiconductors.The main method to control the carrier concentration of polymers is the chemical doping process by charge transfer between polymer and dopant.Therefore,the deep understanding of doping mechanisms from the point view of chemical structure has been highly desired to overcome the bottlenecks in polymeric thermoelectrics.In this contribution,we will briefly review the recently emerging progress for discovering the structure–property relationship of organic thermoelectric materials with high performance.Highlights include some achievements about doping strategies to effectively modulate the carrier concentration,the design rules of building blocks and side chains to enhance charge transport and improve the doping efficiency.Finally,we will give our viewpoints on the challenges and opportunities in the field of polymer thermoelectric materials.展开更多
文摘Salvaged cow horns from slaughterhouses have been transformed into fine particles for a physical characterization that has led us to determine the humidity rate (2.34% ± 0.054%), the actual density situated between 0.586 g/cm<sup>3</sup> and 0.732 g/cm<sup>3</sup>, the swelling rate (12%), and one chemical characterization that permitted us to determine the rate of dry matters (97.05%), of mineral matters (2.5%), of protein matters (94.52%). From these weak values, it can easily be seen that cow horn case doesn’t absorb much water and improve the mechanical characteristics of the composite;the high rate of protein shows that keratin which is the structural molecule favors its gripping as reinforcing element in the manufacturing of composite materials.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB328803)
文摘An efficient interface modification is introduced to improve the performance of polymeric thin film transistors. This efficient interface modification is first achieved by 4-fluorothiophenol(4-FTP) self-assembled monolayers(SAM) to chemically treat the silver source–drain(S/D) contacts while the silicon oxide(SiO2) dielectric interface is further primed by either hexamethyldisilazane(HMDS) or octyltrichlorosilane(OTS-C8). Results show that contact resistance is the dominant factor that limits the field effect mobility of the PTDPPTFT4 transistors. With proper surface modification applied to both the dielectric surface and the bottom contacts, the field effect mobilities of the bottom-gate bottom-contact PTDPPTFT4 transistors were significantly improved from 0.15 cm^2·V^-1·s^-1 to 0.91 cm^2·V^-1·s^-1.
基金support by the Visiting Scholar Foundation of the Key Lab in Nankai University, and to financial support by the National Natural Science Foundation of China (No. 29974014).
文摘When colloidal silver particles were chemically deposited onto polymer film as an over-coating layer, surface-enhanced Raman scattering (SERS) spectra could be collected for the surface analysis. SERS measurements of liquid crystal film were successfully performed without disturbing the surface morphology.
文摘In view of the challenges posed by the nature of expansive soil to structural stability which makes it necessary in some cases to improve the soils before structures can be placed on them, there is a need to investigate modern trends in ground improvement techniques in order to determine their reliability. This study is thus aimed at using the reliability based approach to analyze the use of polyvinyl alcohol (PVA) in combination with 1,2,3,4 Butane-tetracarboxylic acid (BTCA) for ground improvement. This study is necessary given the challenges posed by the nature of expansive soil to structural stability which makes it necessary in some cases to improve the soils before structures can be placed on them. Simplex lattice design was employed to build the design of experiment before experimental investigations were carried out on the PVA-BTCA treated soft soils. Reliability indices were computed on the basis of the 28<sup>th</sup> day unconfined compressive strength (UCS) of the treated soil. Reliability index models were developed using the Scheffe’s technique and optimized using excel solver. From analysis of results, reliability model developed proved adequate at 5% level of significance. PVA-BTCA combination provided a potential reliability or probability of success of 99.936% at components combination of: 98.4256% for soil, 1.2352% for PVA, 0.3392% for BTCA and 15.9934% for water. It was therefore recommended that financial implications of using PVA-BTCA for stabilization be compared to those of conventional methods, in order to compare their performance-cost ratio.
基金supported by National Natural Science Foundation of China (Grant No. 60773080, Grant No. 90923016)Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 09ZZ86)Leading Academic Discipline Project of Shanghai Municipal Education Commission, China (Grant No. J50102)
文摘Abrasive is the one of key influencing factors during chemical mechanical polishing(CMP) process. Currently, α-Alumina (α-Al2O3) particle, as a kind of abrasive, has been widely used in CMP slurries, but their high hardness and poor dispersion stability often lead to more surface defects. After being polished with composite particles, the surface defects of work pieces decrease obviously. So the composite particles as abrasives in slurry have been paid more attention. In order to reduce defect caused by pure α-Al2O3 abrasive, α-alumina-g-polystyrene sulfonic acid (α-Al2O3-g-PSS) composite abrasive was prepared by surface graft polymerization. The composition, structure and morphology of the product were characterized by Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS), time-of-flight secondary ion mass spectroscopy(TOF-SIMS), and scanning electron microscopy(SEM), respectively. The results show that polystyrene sulfonic acid grafts onto α-Al2O3, and has well dispersibility. Then, the chemical mechanical polishing performances of the composite abrasive on glass substrate were investigated with a SPEEDFAM-16B-4M CMP machine. Atomic force microscopy(AFM) images indicate that the average roughness of the polished glass substrate surface can be decreased from 0.835 nm for pure α-Al2O3 abrasive to 0.583 nm for prepared α-Al2O3-g-PSS core-shell abrasive. The research provides a new and effect way to improve the surface qualities during CMP.
基金We acknowledge the financial support from Dawood University of Engineering and Technology Karachi,Pakistan,under the project:“Strengthening of DUET”and Department of Petroleum Engineering,Universiti Teknologi PETRONAS,Malaysia.
文摘In enhanced oil recovery,different chemicalmethods utilization improves hydrocarbon recovery due to their fascinating abilities to alter some critical parameters in porous media,such as mobility control,the interaction between fluid to fluid,and fluid to rock surface.For decades the use of surfactant and polymer flooding has been used as tertiary recovery methods.In the current research,the inclusion of nanomaterials in enhanced oil recovery injection fluids solely or in the presence of other chemicals has got colossal interest.The emphasis of this review is on the applicability of nanofluids in the chemical enhanced oil recovery.The responsiblemechanisms are an increment in the viscosity of injection fluid,decrement in oil viscosity,reduction in interfacial and surface tension,and alteration of wettability in the rock formation.In this review,important parameters are presented,which may affect the desired behavior of nanoparticles,and the drawbacks of nanofluid and polymer flooding and the need for a combination of nanoparticles with the polymer are discussed.Due to the lack of literature in defining the mechanism of nanofluid in a reservoir,this paper covers majorly all the previous work done on the application of nanoparticles in chemical enhanced oil recovery at home conditions.Finally,the problems associatedwith the nano-enhanced oil recovery are outlined,and the research gap is identified,which must be addressed to implement polymeric nanofluids in chemical enhanced oil recovery.
基金Supported by the National Basic Research Program of China(No.2007CB216408)the National Natural Science Foundation of China(No.50602020)+1 种基金the Program for Outstanding Young Teachers in Lanzhou University of Technology China (No.Q200803)
文摘Chemically modified ordered mesoporous carbon CMK-3 materials were prepared by means of an easy wet-oxidative method in 2 mol/L nitric acid aqueous solution. A large amount of oxygen-containing functional groups were introduced onto the CMK-3 surface. Modified CMK-3(m-CMK-3) and aniline monomer were polymerized via an in situ chemical oxidative polymerization method. Morphological characterizations of m-CMK-3/PANI (polyaniline) composites were carried out via field emission scanning electron microscopy(SEM). Their electrochemical properties were investigated with cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The m-CMK-3/PANI composites have excellent properties in capacitance, and the highest specific capacitance(SC) value was up to 489 F/g, suggesting their potential application in the electrode material for electrochemical capacitors.
基金supported by the National Science Foundation of China(NSFC)(No.61101029)the Fundamental Research Funds for the Central Universities(No.ZYGX2010J057)+1 种基金the national defense pre-research foundation(No.9140A23070111DZ02042)A Plan for Supporting the New Century Talents(No.NCET-12-0091)
文摘We report chemical vapor phase polymerization(VPP) deposition of poly(3,4-ethylenedioxythiophene)(PEDOT) and PEDOT/graphene on porous dielectric tantalum pentoxide(Ta_2O_5) surface as cathode films for solid tantalum electrolyte capacitors. The modified oxidant/oxidant-graphene films were first deposited on Ta_2O_5 by dip-coating, and VPP process was subsequently utilized to transfer oxidant/oxidant-graphene into PEDOT/PEDOT-graphene films. The SEM images showed PEDOT/PEDOT-graphene films was successfully constructed on porous Ta_2O_5 surface through VPP deposition, and a solid tantalum electrolyte capacitor with conducting polymer-graphene nano-composites as cathode films was constructed. The high conductivity nature of PEDOT-graphene leads to resistance decrease of cathode films and lower contact resistance between PEDOT/graphene and carbon paste. This nano-composite cathode films based capacitor showed ultralow equivalent series resistance(ESR) ca. 12 m? and exhibited excellent capacitance-frequency performance, which can keep 82% of initial capacitance at 500 KHz. The investigation on leakage current revealed that the device encapsulation process has no influence on capacitor leakage current, indicating the excellent mechanical strength of PEDOT/PEDOT-gaphene films. This high conductivity and mechanical strength of graphene-based polymer films shows promising future for electrode materials such as capacitors, organic solar cells and electrochemical energy storage devices.
文摘Scrap vulcanized rubber is amongst a bigger waste polymers. It does not decompose easily owing to its cross linked structure. Modification of scrap tires powder by the grafting with 2-acrylamido-2-methylpropanesulfonic acid (AMPS) is described. The grafting is achieved through free radical initiation. The effects of different amount of monomer and initiator were examined. Also the influence of reaction time and temperature were investigated. The grafted waste rubber was characterized by FT/IR, SEM and DSC measurements. The proposed mechanism of the grafting reaction is discussed. From DSC and SEM studies of WR-g-AMPS compared with PAMPS and WR, the results show that the particle size and crystallinity were enhanced for the grafted copolymers. The obtained modified scraped tires will used as an ion exchanger for the future applications.
基金Natural Science Foundation of China (51603031)Liaoning Provincial Natural Science Foundation of China (2020-MS-087)China Scholarship Council(202306080157)。
文摘This work focuses on the development of high temperature polymer electrolyte membranes(HT-PEMs)as key materials for HT-PEM fuel cells(HT-PEMFCs).Recognizing the challenges associated with the phosphoric acid(PA) doped polybenzimidazole(PBI) membranes,including the use of carcinogenic monomers and complex synthesis procedures,this study aims to develop more cost-effective,readily synthesized,and high-performance alternatives.A series of superacid-catalyzed polyhydroxyalkylation reactions have been carefully designed between p-terphenyl and aldehydes bearing imidazole moieties,resulting in a new class of HT-PEMs.It is found that the chemical structure of aldehyde-substituted N-heterocycles significantly impacts the polymerization reaction.Specifically,the use of 1-methyl-2-imidazole-formaldehyde and 1 H-imidazole-4-formaldehyde monomers leads to the formation of high-viscosity,rigid,and ether-free polymers,denoted as PTIm-a and PTIm-b.Membranes fabricated from these polymers,due to their pendent imidazole groups,exhibit an exceptional capacity for PA absorption.Notably,PTIm-a,carrying methylimidazole moieties,demonstrates a superior chemical stability by maintaining morphology and structural stability during 350 h of Fenton testing.After being immersed in 75 wt% PA at 40℃,the PTIm-a membrane reaches a PA content of 152%,maintains a good tensile strength of 13.6 MPa,and exhibits a moderate conductivity of 50.2 mS cm^(-1) at 180℃.Under H_(2)/O_(2) operational conditions,a single cell based on the PTIm-a membrane attains a peak power density of 732 mW cm^(-2) at 180℃ without backpressure.Furthermore,the membrane demonstrates stable cycle stability over 173 h within 18 days at a current density of 200 mA cm^(-2),indicating its potential for practical application in HT-PEMFCs.This work highlights innovative strategies for the synthesis of advanced HT-PEMs,offering significant improvements in membrane properties and fuel cell performance,thus expanding the horizons of HT-PEMFC technology.
基金supported by Fok Ying-Tong Education Foundation(Grant No.171043)Sichuan Science and Technology Program(Award No.2020YFQ0036).
文摘Polymer gels have been accepted as a useful tool to address many sealing operations such as drilling and completion,well stimulation,wellbore integrity,water and gas shutoff,etc.Previously,we developed an ultra-high strength gel(USGel)for medium to ultra-low temperature reservoirs.However,the removal of USGel is a difficult problem for most temporary plugging operations.This paper first provides new insights into the mechanism of USGel,where multistage network structure and physical entanglement are the main reasons for USGel possessing ultra-high strength.Then the effects of acid breakers,encapsulated breakers,and oxidation breakers(including H_(2)O_(2),Na_(2)S_(2)O_(8),Ca(ClO)_(2),H_(2)O_(2)+NaOH,Na_(2)S_(2)O_(8)+NaOH,and Ca(ClO)_(2)+NaOH)were evaluated.The effects of component concentration and temperature on the breaking solution were studied,and the corrosion performance,physical simulation and formation damage tests of the breaking solution were carried out.The final formulation of 2%-4%NaOH+4.5%-6%H_(2)O_(2) breaking solution was determined,which can make USGel completely turn into water at 35e105C.The combinations of“acid t breaking solution”,“acid+encapsulated breaker”and“encapsulated breaker+breaking solution”were evaluated for breaking effect.The acid gradually reduced the volume of USGel,which increased the contact area between breaking solution and USGel,and the effect of“4%acid+breaking solution”was 23 times higher than that of breaking solution alone at 35C.However,the acid significantly reduced the strength of USGel.This paper provides new insights into the breaking of high-strength gels with complex network structures.
文摘India is currently producing crude oil from matured fields because of insufficient discoveries of new fields.Therefore,in order to control the energy crisis in India,enhanced oil recovery(EOR)techniques are required to reduce the import of crude from the OPEC(Organization of the Petroleum Exporting Countries).This review mentions chemical EOR techniques(polymers,surfactants,alkali,nanoparticles,and combined alkali-surfactant-polymer flooding)and operations in India.Chemical EOR methods are one of the most efficient methods for oil displacement.The efficiency is enhanced by interfacial tension(IFT)reduction using surfactants and alkali,and mobility control of injected water is done by adding a polymer to increase the volumetric sweep efficiency.This paper also reviews the current trend of chemical EOR,prospects of chemical EOR in Indian oilfields,the development of chemical EOR in India with their challenges raising with economics,and screening criteria for chemical EOR implementation on the field scale.Furthermore,the review gives a brief idea about chemical EOR implementation in Indian oilfields in future prospects to increase the additional oil recovery from existing depleted fields to reduce the import of crude oil.The outcome of this review depicts all chemical EOR operations and recovery rates both at the laboratory scale and field scale around the country.The additional recovery rates are compared from various chemical EOR methods like conventional chemical flooding methods and conventional chemicals combined with nanoparticles on a laboratory scale.The development of chemical EOR in the past few decades and the EOR policy given by the government of India has been mentioned in this review.The analysis provides an idea about enhanced recovery screening and implementation of chemical EOR methods in existing fields will significantly reduce the energy crisis in India.
文摘Polymers of N-phenylanthranilic acid were obtained by oxidative polymerization in the heterophase system in the presence of chloroform. Effect of synthesis conditions on the chemical structure of the polymers was studied. It was found that the growth of polymeric chain occurs via C-C joining into 2- and 4-positions of phenyl rings with respect to nitrogen. Thermal stability of poly-N-phenylanthranilic acid was studied.
文摘In this paper, the content of water glass before and after adding modifying agent was measured by Trimethylsilyl-gas-chromatography. The experimental results showed that different modulus of water glass could generate different content of mono-silicate acid and oligomeric silicate acid in water glass. After a period of storage, different modulus of water glass led to decrease of silicate content at different levels. Because higher content of Na<sub>2</sub>O in water glass tended to incur the alkaline polymerization, the occurrence of depolymerization of silicate species would lead to an increase of oligomeric silicate species, resulting in a drawback of silicate species content after a period of storage. And contrary to that, lower content of Na<sub>2</sub>O in water glass tended to incur the acidic polymerization. When the modifying agent was added to the newly made water glass, the amount of mono-silicate acid and oligomeric silicate acid also decreased. In modified water glass, the change of each silicate acid species was less than that in unmodified water glass. These results showed that the modifying agent retarded the aging of water glass. It had remarkable significance on the theory and practical application of water glass chemistry.
基金the National Key Research and Development Program of China(2020YFB2008501)the National Natural Science Foundation of China(21901207)Shaanxi Science and Technology Fund(2020JQ-137)for financial support.
文摘Organic mechanophores have been widely adopted for polymer mechanotransduction.However,most examples of polymer mechanotransduction inevitably experience macromolecular chain rupture,and few of them mimic mussel’s mechanochemical regeneration,a mechanically mediated process from functional units to functional materials in a controlled manner.In this paper,inorganic mechanoluminescent(ML)materials composed of CaZnOS-ZnS-SrZnOS:Mn2+were used as a mechanotransducer since it features both piezoelectricity and mechanolunimescence.The utilization of ML materials in polymerization enables both mechanochemically controlled radical polymerization and the synthesis of ML polymer composites.This procedure features a mechanochemically controlled manner for the design and synthesis of diverse mechanoresponsive polymer composites.
基金the funding from the National Natural Science Foundation of China(22178301 and 21938011)the grant from the Science&Technology Department of Zhejiang Province(2023C01182)+3 种基金the funding from the Natural Science Foundation of Zhejiang Province(LR21B060003)supported by the Fundamental Research Funds for the Central Universities(226-2024-00023)Shanxi Institute of Zhejiang University for New Materials and Chemical Industry(2022SZ-TD005)Quzhou Science and Technology Program(2021NC02).
文摘The continuous evolution of chip manufacturing demands the development of materials with ultra-low dielectric constants.With advantageous dielectric and mechanical properties,initiated chemical vapor deposited(iCVD)poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane)(pV3D3)emerges as a promising candidate.However,previous works have not explored etching for this cyclosiloxane polymer thin film,which is indispensable for potential applications to the back-end-of-line fabrication.Here,we developed an etching process utilizing O2/Ar remote plasma for cyclic removal of iCVD pV3D3 thin film at sub-nanometer scale.We employed in-situ quartz crystal microbalance to investigate the process parameters including the plasma power,plasma duration and O2 flow rate.X-ray photoelectron spectroscopy and cross-sectional microscopy reveal the formation of an oxidized skin layer during the etching process.This skin layer further substantiates an etching mechanism driven by surface oxidation and sputtering.Additionally,this oxidized skin layer leads to improved elastic modulus and hardness and acts as a barrier layer for protecting the bottom cyclosiloxane polymer from further oxidation.
文摘Two new coordination polymers,[Ni(Hpdc)(bib)(H_(2)O)]_(n)(1)and{[Ni(bib)_(3)](ClO_(4))_(2)}_(n)(2),were prepared by mixing Ni^(2+),3,5⁃pyrazoledicarboxylic acid(H3pdc)/p⁃nitrobenzoic acid and 1,4⁃bis(imidazol⁃1⁃ylmethyl)butane(bib)by a hydrothermal method,respectively.X⁃ray crystallography reveals a 2D network constructed by six⁃coordinated Ni(Ⅱ)centers,bib,and Hpdc2-ligands in complex 1,while a 2D network is built by Ni(Ⅱ)and bib ligands in 2.Furthermore,the quantum⁃chemical calculations have been performed on‘molecular fragments’extracted from the crystal structure of 1 using the PBE0/LANL2DZ method in Gaussian 16 and the VASP program.CCDC:2343794,1;2343798,2.
基金the National Natural Science Foundation of China(No.50578073)863 Project (No.2006AA06Z383).
文摘A series of spherical activated carbons(SACs)with different pore structures were prepared from chloromethylated polydivinylbenzene by ZnCl_2 activation.The effects of activation temperature and retention time on the yield and textural properties of the resulting SACs were studied.All the SACs are generated with high yield of above 65% and exhibit relatively high mesopore fraction(me%)of 35.7%-43.6% compared with conventional activated carbons.The sample zlc28 prepared at 800℃for 2 h has the largest BET surf...
基金supported by the National Natural Science Foundation of China(Grant No.21905294)the Shanghai Sailing Program。
文摘Organic semiconductors,especially polymer semiconductors,have attracted extensive attention as organic thermoelectric materials due to their capabilities for flexibility,low-cost fabrication,solution processability and low thermal conductivity.However,it is challenging to obtain high-performance organic thermoelectric materials because of the low intrinsic carrier concentration of organic semiconductors.The main method to control the carrier concentration of polymers is the chemical doping process by charge transfer between polymer and dopant.Therefore,the deep understanding of doping mechanisms from the point view of chemical structure has been highly desired to overcome the bottlenecks in polymeric thermoelectrics.In this contribution,we will briefly review the recently emerging progress for discovering the structure–property relationship of organic thermoelectric materials with high performance.Highlights include some achievements about doping strategies to effectively modulate the carrier concentration,the design rules of building blocks and side chains to enhance charge transport and improve the doping efficiency.Finally,we will give our viewpoints on the challenges and opportunities in the field of polymer thermoelectric materials.