Thermal power plants are generally constructed near to sea coast to meet their requirement of coolingwater. The warm water discharge from the thermal power plant is one of the major environmentalconcerns in view of th...Thermal power plants are generally constructed near to sea coast to meet their requirement of coolingwater. The warm water discharge from the thermal power plant is one of the major environmentalconcerns in view of the thermal pollution in the sea water. The temperature limit for the warm waterdischarge from the thermal power plant has to be monitored and controlled. Coastal Gujarat PowerLimited (CGPL) operates (24×7) at an “once-through system” based sea water circulation for powergeneration. The used sea water is then discharged into the sea through an outlet channel. As per environmental norms, the discharge water temperature needs to be maintained below the stipulated “delta”rise (+7 ℃) with respect to ambient sea surface temperature at the inlet. We demonstrate the applicability of thermal remote sensing data in understanding the seasonal and temporal variations of thetemperature difference between the discharge water and the ambient sea water. We used thermal banddata from Landsat-8 satellite imagery to map water surface temperature and create temperature profilesalong the intake and outflow channels (till the sea), to understand the variation of temperature andestimate the “DT” between intake point and various observation points along the outflow. This analysiswas carried out for all 11 months (except June) of the year 2018 to correlate temperature variations withseasonal changes. Tidal conditions during the time of data acquisition were also considered to accountfor the effect of tides on DT. The result shows that the average temperature rise between intake andoutflow are maintained at ~3 ℃ across all the months of 2018, with minor variations in the months ofJuly and August. Further, average temperature drop from outflow to cooling channel (before diaphragm)is seen to be ~2 ℃ across all the months with similar seasonal fluctuations.展开更多
To this day, only two types of solar power plants have been proposed and built: high temperature thermal solar one and photovoltaic one. It is here proposed a new type of solar thermal plant using glass-top flat surfa...To this day, only two types of solar power plants have been proposed and built: high temperature thermal solar one and photovoltaic one. It is here proposed a new type of solar thermal plant using glass-top flat surface solar collectors, so working at low temperature (i.e., below 100°C). This power plant is aimed at warm countries, i.e., the ones mainly located between -40° and 40° latitude, having available space along their coast. This land based plant, to install on the seashore, is technologically similar to the one used for OTEC (Ocean Thermal Energy Conversion). This plant, apart from supplying electricity with a much better thermodynamic efficiency than OTEC plants, has the main advantage of providing desalinated water for drinking and irrigation. This plant is designed to generate electricity (and desalinated water) night and day and all year round, by means of hot water storage, with just a variation of the power delivered depending on the season.展开更多
文摘Thermal power plants are generally constructed near to sea coast to meet their requirement of coolingwater. The warm water discharge from the thermal power plant is one of the major environmentalconcerns in view of the thermal pollution in the sea water. The temperature limit for the warm waterdischarge from the thermal power plant has to be monitored and controlled. Coastal Gujarat PowerLimited (CGPL) operates (24×7) at an “once-through system” based sea water circulation for powergeneration. The used sea water is then discharged into the sea through an outlet channel. As per environmental norms, the discharge water temperature needs to be maintained below the stipulated “delta”rise (+7 ℃) with respect to ambient sea surface temperature at the inlet. We demonstrate the applicability of thermal remote sensing data in understanding the seasonal and temporal variations of thetemperature difference between the discharge water and the ambient sea water. We used thermal banddata from Landsat-8 satellite imagery to map water surface temperature and create temperature profilesalong the intake and outflow channels (till the sea), to understand the variation of temperature andestimate the “DT” between intake point and various observation points along the outflow. This analysiswas carried out for all 11 months (except June) of the year 2018 to correlate temperature variations withseasonal changes. Tidal conditions during the time of data acquisition were also considered to accountfor the effect of tides on DT. The result shows that the average temperature rise between intake andoutflow are maintained at ~3 ℃ across all the months of 2018, with minor variations in the months ofJuly and August. Further, average temperature drop from outflow to cooling channel (before diaphragm)is seen to be ~2 ℃ across all the months with similar seasonal fluctuations.
文摘To this day, only two types of solar power plants have been proposed and built: high temperature thermal solar one and photovoltaic one. It is here proposed a new type of solar thermal plant using glass-top flat surface solar collectors, so working at low temperature (i.e., below 100°C). This power plant is aimed at warm countries, i.e., the ones mainly located between -40° and 40° latitude, having available space along their coast. This land based plant, to install on the seashore, is technologically similar to the one used for OTEC (Ocean Thermal Energy Conversion). This plant, apart from supplying electricity with a much better thermodynamic efficiency than OTEC plants, has the main advantage of providing desalinated water for drinking and irrigation. This plant is designed to generate electricity (and desalinated water) night and day and all year round, by means of hot water storage, with just a variation of the power delivered depending on the season.