期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Hybrid Isothermal Model for the Ferrohydrodynamic Chemically Reactive Species
1
作者 Noor Muhammad S.Nadeem M.T.Mustafa 《Communications in Theoretical Physics》 SCIE CAS CSCD 2019年第4期384-392,共9页
A hybrid isothermal model for the homogeneous-heterogeneous reactions in ferrohydrodynamic boundary layer ?ow is established. The characteristics of Newtonian heating and magnetic dipole in a ferro?uid due to a stretc... A hybrid isothermal model for the homogeneous-heterogeneous reactions in ferrohydrodynamic boundary layer ?ow is established. The characteristics of Newtonian heating and magnetic dipole in a ferro?uid due to a stretchable surface is analyzed for three chemical species. It is presumed that the isothermal cubic autocatalator kinetic gives the homogeneous reaction and the ?rst order kinetics gives the heterogeneous(surface) reaction. The analysis is carried out for equal diffusion coe?cients of all autocatalyst and reactions. Heat ?ux is examined by incorporating Fourier's law of heat conduction. Characteristics of materialized parameters on the magneto-thermomechanical coupling in the ?ow of a chemically reactive species are investigated. Further, the heat transfer rate and friction drag are depicted for the ferrohydrodynamic chemically reactive species. It is evident that the Schmidt number has increasing behavior on the rate of heat transfer in the boundary layer. Comparison with available results for speci?c cases is found an excellent agreement. 展开更多
关键词 ferromagnetic fluid hybrid chemically reactive species Newtonian heating heat transfer friction drag
原文传递
MHD flow and mass transfer of chemically reactive upper convected Maxwell fluid past porous surface 被引量:1
2
作者 K. VAJRAVELU K. V. PRASAD +1 位作者 A. SUJATHA 吴朝安 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第7期899-910,共12页
The magnetohydrodynamic (MHD) flow and mass transfer of an electrically conducting upper convected Maxwell (UCM) fluid at a porous surface are studied in the presence of a chemically reactive species. The governin... The magnetohydrodynamic (MHD) flow and mass transfer of an electrically conducting upper convected Maxwell (UCM) fluid at a porous surface are studied in the presence of a chemically reactive species. The governing nonlinear partial differential equations along with the appropriate boundary conditions are transformed into nonlinear ordinary differential equations and numerically solved by the Keller-box method. The effects of various physical parameters on the flow and mass transfer characteristics are graphically presented and discussed. It is observed that the order of the chemical reaction is to increase the thickness of the diffusion boundary layer. Also, the mass transfer rate strongly depends on the Schmidt number and the reaction rate parameter. Furthermore, available results in the literature are obtained as a special case. 展开更多
关键词 chemically reactive species upper convected Maxwell (UCM) fluid mag-netohydrodynamic (MHD) flow mass transfer Keller-box method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部