The C.oleifera oil processing industry generates large amounts of solid wastes,including C.oleifera shell(COS)and C.oleifera cake(COC).Distinct from generally acknowledged lignocellulosic biomass(corn stover,bamboo,bi...The C.oleifera oil processing industry generates large amounts of solid wastes,including C.oleifera shell(COS)and C.oleifera cake(COC).Distinct from generally acknowledged lignocellulosic biomass(corn stover,bamboo,birch,etc.),Camellia wastes contain diverse bioactive substances in addition to the abundant lignocellulosic components,and thus,the biorefinery utilization of C.oleifera processing byproducts involves complicated processing technologies.This reviewfirst summarizes various technologies for extracting and converting the main components in C.oleifera oil processing byproducts into value-added chemicals and biobased materials,as well as their potential applications.Microwave,ultrasound,and Soxhlet extractions are compared for the extraction of functional bioactive components(tannin,flavonoid,saponin,etc.),while solvothermal conversion and pyrolysis are discussed for the conversion of lignocellulosic components into value-added chemicals.The application areas of these chemicals according to their properties are introduced in detail,including utilizing antioxidant and anti-in-flammatory properties of the bioactive substances for the specific application,as well as drop-in chemicals for the substitution of unrenewable fossil fuel-derived products.In addition to chemical production,biochar fabricated from COS and its applications in thefields of adsorption,supercapacitor,soil remediation and wood composites are comprehensively reviewed and discussed.Finally,based on the compositions and structural characteristics of C.oleifera byproducts,the development of full-component valorization strategies and the expansion of the appli-cationfields are proposed.展开更多
This future article discusses the new prospects and directions of CO_(2)conversion via the photo-electrocatalytic(PEC)route.The second(2nd)generation solar fuels and chemicals(SFs)are generated directly in PEC systems...This future article discusses the new prospects and directions of CO_(2)conversion via the photo-electrocatalytic(PEC)route.The second(2nd)generation solar fuels and chemicals(SFs)are generated directly in PEC systems via electrons/protons reactions without forming molecular H_(2)as an intermediate,overcoming the thermodynamics limitations and practical issues encountered for electro-fuels produced by multistep thermocatalytic processes(i.e.CO_(2)conversion with H_(2)coming from water electrolysis).A distributed and decentralized production of SFs requires very compact,highly integrated,and intensified technologies.Among the existing reactors of advanced design(based on artificial leaves or photosynthesis),the integrated photovoltaic plus electrocatalytic(PV-EC)device is the only system(demonstrated at large scale)to produce SFs with high solar-to-fuel(STF)efficiency.However,while the literature indicates STF efficiency as the main(and only)measure of process performance,we remark here the need to refer to productivity(in terms of current density)and make tests with reliable flow PEC systems(with electrodes of at least 5–10 cm^(2))to accelerate the scaling-up process.Using approaches that minimize downstream separation costs is also mandatory.Many limitations exist in PEC systems,but most can be overcome by proper electrode and cell engineering,thus going beyond the properties of the electrocatalysts.As examples of current developments,we present the progress of(i)artificial leaf/tree devices for green H_(2)distributed production and(ii)a PEC device producing the same chemicals at both cathode and anode parts without downstream operations for green solvent distributed production.Based on these developments,future directions,such as producing fertilizers and food components from the air,are outlined.The aim is to provide new ideas and research directions from a personal perspective.展开更多
Emerging as a new class of two-dimensional materials with atomically thin layers,MBenes have great potential for many important applications such as energy storage and electrocatalysis.Toward mitigating carbon footpri...Emerging as a new class of two-dimensional materials with atomically thin layers,MBenes have great potential for many important applications such as energy storage and electrocatalysis.Toward mitigating carbon footprint,there has been increasing interest in CO_(2)/CO conversion on MBenes,but mostly focused on C_(1)products.C^(2+)chemicals generally possess higher energy densities and wider applications than C_(1)counterparts.However,C–C coupling is technically challenging because of high energy requirement and currently few catalysts are suited for this process.Here,we explore electrochemical CO reduction reaction to C_(2)chemicals on Mo_(2)B_(2)O_(2)MBene via density-functional theory calculations.Remarkably,the most favorable CO–COH coupling is revealed to be a spontaneous and barrierless process,making Mo_(2)B_(2)O_(2)an efficient catalyst for C–C coupling.Among C_(1)and C_(2)chemicals,ethanol is predicted to be the primary product.Furthermore,by charge and bond analysis,it is unraveled that there exist significantly more unbonded electrons in the C atom of intermediate*COH than other C_(1)intermediates,which is responsible for the facile C–C coupling.From an atomic scale,this work provides microscopic insight into C–C coupling process and suggests Mo_(2)B_(2)O_(2)a promising catalyst for electrochemical CO reduction to C_(2)chemicals.展开更多
In the search of alternative resources to make commodity chemicals and transportation fuels for a low carbon future,lignocellulosic biomass with over 180-billion-ton annual production rate has been identified as a pro...In the search of alternative resources to make commodity chemicals and transportation fuels for a low carbon future,lignocellulosic biomass with over 180-billion-ton annual production rate has been identified as a promising feedstock.This review focuses on the state-of-the-art catalytic transformation of lignocellulosic biomass into value-added chemicals and fuels.Following a brief introduction on the structure,major resources and pretreatment methods of lignocellulosic biomass,the catalytic conversion of three main components,i.e.,cellulose,hemicellulose and lignin,into various compounds are comprehensively discussed.Either in separate steps or in one-pot,cellulose and hemicellulose are hydrolyzed into sugars and upgraded into oxygen-containing chemicals such as 5-HMF,furfural,polyols,and organic acids,or even nitrogen-containing chemicals such as amino acids.On the other hand,lignin is first depolymerized into phenols,catechols,guaiacols,aldehydes and ketones,and then further transformed into hydrocarbon fuels,bioplastic precursors and bioactive compounds.The review then introduces the transformations of whole biomass via catalytic gasification,catalytic pyrolysis,as well as emerging strategies.Finally,opportunities,challenges and prospective of woody biomass valorization are highlighted.展开更多
Copper(Cu)-based materials are known as the most attractive catalysts for electrochemical carbon dioxide reduction reaction(CO_(2)RR),especially the Cu^(+) species(e.g.,Cu_(2)O),which show excellent capability for cat...Copper(Cu)-based materials are known as the most attractive catalysts for electrochemical carbon dioxide reduction reaction(CO_(2)RR),especially the Cu^(+) species(e.g.,Cu_(2)O),which show excellent capability for catalyzing CO_(2) to C_(2+) chemicals because of their unique electronic structure.However,the active Cu^(+) species are prone to be reduced to metallic Cu under an electroreduction environment,thus resulting in fast deactivation and poor selectivity.Here,we developed an advanced surface modification strategy to maintain the active Cu^(+) species via assembling a protective layer of metal-organic framework(copper benzenetricarboxylate,CuBTC) on the surface of Cu_(2)O octahedron(Cu_(2)O@CuBTC).It's encouraging to see that the Cu_(2)O@CuBTC heterostructure outperforms the bare Cu_(2)O octahedron in catalyzing CO_(2) to C_(2+) chemicals and dramatically enhances the ratio of C_(2)H_(4)/CH_(4) products.A systematic study reveals that the introduced CuBTC shell plays a critical role in maintaining the active Cu^(+) species in Cu_(2)O@CuBTC heterostructure under reductive conditions.This work offers a practical strategy for improving the catalytic performance of CO_(2)RR over copper oxides and also establishes a route to maintain the state of valence-sensitive catalysts.展开更多
In this research, at different quantities as fillers, Boric Acid, Calcite (CaCO<sub>3</sub>), SPT (Sodium Perborate Tetrahydrate) and as coupling matters, 3%, MAPE (Maleic Anhydride Grafted Polyethylene), ...In this research, at different quantities as fillers, Boric Acid, Calcite (CaCO<sub>3</sub>), SPT (Sodium Perborate Tetrahydrate) and as coupling matters, 3%, MAPE (Maleic Anhydride Grafted Polyethylene), Titanate and Silanyl (Vinyltriethoxysilane) were added waste paper. Composite boards were pressed and cut in 1 × 30 × 30 cm. In order to identify some properties of the produced boards, experimental works were applied according to the standards. In conclusion, bending stress reduced with filler materials and chemicals was reduced even more than the bending stress except for some experimental groups. In addition, it was observed that the coupling chemicals increased the bending strength and modulus of elasticity compared to the fillers.展开更多
Background: Prolonged exposure to environmental toxicants like endocrine-disrupting chemicals has been linked to several ovarian pathologies. Exposure to endocrine-disrupting chemicals may start at any time of life fr...Background: Prolonged exposure to environmental toxicants like endocrine-disrupting chemicals has been linked to several ovarian pathologies. Exposure to endocrine-disrupting chemicals may start at any time of life from the fetal stage to adulthood resulting in various health complications The purpose of our study is to compare the concentration levels and association of benzopyrene, bisphenol A and genistein in patients with ovarian tumors and normal control group. We also sort to evaluate the predictive performance of benzopyrene, bisphenol A and genistein in patients with ovarian tumors. Methods: A case-control study was conducted for randomly selected participants involving 30 patients and 30 controls. 30 patients with radiologically diagnosed and histopathological confirmed ovarian tumors were included in the study between January 2022 and December 2022. Urine samples from each group were analyzed using liquid chromatography-mass spectrometry. Descriptive analysis for normally distributed continuous variables was done accordingly. Concentration levels of endocrine-disrupting chemicals were assessed using the Mann-Whitney test. The association of endocrine-disrupting chemicals with pathological ovarian tumors was analyzed using binary logistic regression. Evaluation of the diagnostic performance of endocrine-disrupting chemicals was analyzed using the ROC curve. Results: Overall, patients were significantly (P = 0.000) older than the healthy controls. Mean years (SD) were 36.7 (7.90) and 28.8 years (4.89) for patients and normal women respectively. Endometriomas had the highest incidence of 50%. The level of benzopyrene and bisphenol A in patients was significantly higher than those in the control group, while the level of genistein was significantly higher in normal controls. Benzopyrene and bisphenol A were significantly associated with ovarian cysts, and the incidence of pathological ovarian cysts was positively correlated to these EDCs, with OR value 64.79 (P = 0.005) for benzopyrene and 9.609 (P = 0.001) for bisphenol A. Genistein was significantly negatively correlated with the incidence of pathological ovarian tumors, with OR value of 0.153 (P = 0.007). Diagnostic performance on the AUC for benzopyrene, bisphenol A and genistein&l.展开更多
基金The authors acknowledge the financial support from the National Natural Science Foundation of China(Grant No.32201509)Hunan Science and Technology Xiaohe Talent Support Project(2022 TJ-XH 013)+6 种基金Science and Technology Innovation Program of Hunan Province(2022RC1156,2021RC2100)State Key Laboratory of Woody Oil Resource Utilization Common Key Technology Innovation for the Green Transformation of Woody Oil(XLKY202205)State Key Laboratory of Woody Oil Resource Utilization Project(2019XK2002)Key Research and Development Program of the State Forestry and Grassland Administration(GLM[2021]95)Hunan Forestry Outstanding Youth Project(XLK202108-1)Changsha Science and Technology Project(kq2202325,kq2107022)Science and Technology Innovation Leading Talent of Hunan Province(2020RC4026).
文摘The C.oleifera oil processing industry generates large amounts of solid wastes,including C.oleifera shell(COS)and C.oleifera cake(COC).Distinct from generally acknowledged lignocellulosic biomass(corn stover,bamboo,birch,etc.),Camellia wastes contain diverse bioactive substances in addition to the abundant lignocellulosic components,and thus,the biorefinery utilization of C.oleifera processing byproducts involves complicated processing technologies.This reviewfirst summarizes various technologies for extracting and converting the main components in C.oleifera oil processing byproducts into value-added chemicals and biobased materials,as well as their potential applications.Microwave,ultrasound,and Soxhlet extractions are compared for the extraction of functional bioactive components(tannin,flavonoid,saponin,etc.),while solvothermal conversion and pyrolysis are discussed for the conversion of lignocellulosic components into value-added chemicals.The application areas of these chemicals according to their properties are introduced in detail,including utilizing antioxidant and anti-in-flammatory properties of the bioactive substances for the specific application,as well as drop-in chemicals for the substitution of unrenewable fossil fuel-derived products.In addition to chemical production,biochar fabricated from COS and its applications in thefields of adsorption,supercapacitor,soil remediation and wood composites are comprehensively reviewed and discussed.Finally,based on the compositions and structural characteristics of C.oleifera byproducts,the development of full-component valorization strategies and the expansion of the appli-cationfields are proposed.
基金the EU for providing support to these activities through the EU projects DECADE(862030),EPOCH(101070976)and SCOPE(810182)。
文摘This future article discusses the new prospects and directions of CO_(2)conversion via the photo-electrocatalytic(PEC)route.The second(2nd)generation solar fuels and chemicals(SFs)are generated directly in PEC systems via electrons/protons reactions without forming molecular H_(2)as an intermediate,overcoming the thermodynamics limitations and practical issues encountered for electro-fuels produced by multistep thermocatalytic processes(i.e.CO_(2)conversion with H_(2)coming from water electrolysis).A distributed and decentralized production of SFs requires very compact,highly integrated,and intensified technologies.Among the existing reactors of advanced design(based on artificial leaves or photosynthesis),the integrated photovoltaic plus electrocatalytic(PV-EC)device is the only system(demonstrated at large scale)to produce SFs with high solar-to-fuel(STF)efficiency.However,while the literature indicates STF efficiency as the main(and only)measure of process performance,we remark here the need to refer to productivity(in terms of current density)and make tests with reliable flow PEC systems(with electrodes of at least 5–10 cm^(2))to accelerate the scaling-up process.Using approaches that minimize downstream separation costs is also mandatory.Many limitations exist in PEC systems,but most can be overcome by proper electrode and cell engineering,thus going beyond the properties of the electrocatalysts.As examples of current developments,we present the progress of(i)artificial leaf/tree devices for green H_(2)distributed production and(ii)a PEC device producing the same chemicals at both cathode and anode parts without downstream operations for green solvent distributed production.Based on these developments,future directions,such as producing fertilizers and food components from the air,are outlined.The aim is to provide new ideas and research directions from a personal perspective.
基金the A*STAR LCER-FI project(LCERFI01-0033 U2102d2006)the Ministry of Education of Singapore and the National University of Singapore(C-261-000-207-532/C-261-000-777-532 and R-279-000-574-114)for financial support.
文摘Emerging as a new class of two-dimensional materials with atomically thin layers,MBenes have great potential for many important applications such as energy storage and electrocatalysis.Toward mitigating carbon footprint,there has been increasing interest in CO_(2)/CO conversion on MBenes,but mostly focused on C_(1)products.C^(2+)chemicals generally possess higher energy densities and wider applications than C_(1)counterparts.However,C–C coupling is technically challenging because of high energy requirement and currently few catalysts are suited for this process.Here,we explore electrochemical CO reduction reaction to C_(2)chemicals on Mo_(2)B_(2)O_(2)MBene via density-functional theory calculations.Remarkably,the most favorable CO–COH coupling is revealed to be a spontaneous and barrierless process,making Mo_(2)B_(2)O_(2)an efficient catalyst for C–C coupling.Among C_(1)and C_(2)chemicals,ethanol is predicted to be the primary product.Furthermore,by charge and bond analysis,it is unraveled that there exist significantly more unbonded electrons in the C atom of intermediate*COH than other C_(1)intermediates,which is responsible for the facile C–C coupling.From an atomic scale,this work provides microscopic insight into C–C coupling process and suggests Mo_(2)B_(2)O_(2)a promising catalyst for electrochemical CO reduction to C_(2)chemicals.
文摘In the search of alternative resources to make commodity chemicals and transportation fuels for a low carbon future,lignocellulosic biomass with over 180-billion-ton annual production rate has been identified as a promising feedstock.This review focuses on the state-of-the-art catalytic transformation of lignocellulosic biomass into value-added chemicals and fuels.Following a brief introduction on the structure,major resources and pretreatment methods of lignocellulosic biomass,the catalytic conversion of three main components,i.e.,cellulose,hemicellulose and lignin,into various compounds are comprehensively discussed.Either in separate steps or in one-pot,cellulose and hemicellulose are hydrolyzed into sugars and upgraded into oxygen-containing chemicals such as 5-HMF,furfural,polyols,and organic acids,or even nitrogen-containing chemicals such as amino acids.On the other hand,lignin is first depolymerized into phenols,catechols,guaiacols,aldehydes and ketones,and then further transformed into hydrocarbon fuels,bioplastic precursors and bioactive compounds.The review then introduces the transformations of whole biomass via catalytic gasification,catalytic pyrolysis,as well as emerging strategies.Finally,opportunities,challenges and prospective of woody biomass valorization are highlighted.
基金the Fundamental Research Funds for Central Universities (BLX202151)the National Natural Science Foundation of China (22208021, 52225003, 22109004)。
文摘Copper(Cu)-based materials are known as the most attractive catalysts for electrochemical carbon dioxide reduction reaction(CO_(2)RR),especially the Cu^(+) species(e.g.,Cu_(2)O),which show excellent capability for catalyzing CO_(2) to C_(2+) chemicals because of their unique electronic structure.However,the active Cu^(+) species are prone to be reduced to metallic Cu under an electroreduction environment,thus resulting in fast deactivation and poor selectivity.Here,we developed an advanced surface modification strategy to maintain the active Cu^(+) species via assembling a protective layer of metal-organic framework(copper benzenetricarboxylate,CuBTC) on the surface of Cu_(2)O octahedron(Cu_(2)O@CuBTC).It's encouraging to see that the Cu_(2)O@CuBTC heterostructure outperforms the bare Cu_(2)O octahedron in catalyzing CO_(2) to C_(2+) chemicals and dramatically enhances the ratio of C_(2)H_(4)/CH_(4) products.A systematic study reveals that the introduced CuBTC shell plays a critical role in maintaining the active Cu^(+) species in Cu_(2)O@CuBTC heterostructure under reductive conditions.This work offers a practical strategy for improving the catalytic performance of CO_(2)RR over copper oxides and also establishes a route to maintain the state of valence-sensitive catalysts.
文摘In this research, at different quantities as fillers, Boric Acid, Calcite (CaCO<sub>3</sub>), SPT (Sodium Perborate Tetrahydrate) and as coupling matters, 3%, MAPE (Maleic Anhydride Grafted Polyethylene), Titanate and Silanyl (Vinyltriethoxysilane) were added waste paper. Composite boards were pressed and cut in 1 × 30 × 30 cm. In order to identify some properties of the produced boards, experimental works were applied according to the standards. In conclusion, bending stress reduced with filler materials and chemicals was reduced even more than the bending stress except for some experimental groups. In addition, it was observed that the coupling chemicals increased the bending strength and modulus of elasticity compared to the fillers.
文摘Background: Prolonged exposure to environmental toxicants like endocrine-disrupting chemicals has been linked to several ovarian pathologies. Exposure to endocrine-disrupting chemicals may start at any time of life from the fetal stage to adulthood resulting in various health complications The purpose of our study is to compare the concentration levels and association of benzopyrene, bisphenol A and genistein in patients with ovarian tumors and normal control group. We also sort to evaluate the predictive performance of benzopyrene, bisphenol A and genistein in patients with ovarian tumors. Methods: A case-control study was conducted for randomly selected participants involving 30 patients and 30 controls. 30 patients with radiologically diagnosed and histopathological confirmed ovarian tumors were included in the study between January 2022 and December 2022. Urine samples from each group were analyzed using liquid chromatography-mass spectrometry. Descriptive analysis for normally distributed continuous variables was done accordingly. Concentration levels of endocrine-disrupting chemicals were assessed using the Mann-Whitney test. The association of endocrine-disrupting chemicals with pathological ovarian tumors was analyzed using binary logistic regression. Evaluation of the diagnostic performance of endocrine-disrupting chemicals was analyzed using the ROC curve. Results: Overall, patients were significantly (P = 0.000) older than the healthy controls. Mean years (SD) were 36.7 (7.90) and 28.8 years (4.89) for patients and normal women respectively. Endometriomas had the highest incidence of 50%. The level of benzopyrene and bisphenol A in patients was significantly higher than those in the control group, while the level of genistein was significantly higher in normal controls. Benzopyrene and bisphenol A were significantly associated with ovarian cysts, and the incidence of pathological ovarian cysts was positively correlated to these EDCs, with OR value 64.79 (P = 0.005) for benzopyrene and 9.609 (P = 0.001) for bisphenol A. Genistein was significantly negatively correlated with the incidence of pathological ovarian tumors, with OR value of 0.153 (P = 0.007). Diagnostic performance on the AUC for benzopyrene, bisphenol A and genistein&l.