期刊文献+
共找到243篇文章
< 1 2 13 >
每页显示 20 50 100
Arabic Optical Character Recognition:A Review 被引量:1
1
作者 Salah Alghyaline 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期1825-1861,共37页
This study aims to review the latest contributions in Arabic Optical Character Recognition(OCR)during the last decade,which helps interested researchers know the existing techniques and extend or adapt them accordingl... This study aims to review the latest contributions in Arabic Optical Character Recognition(OCR)during the last decade,which helps interested researchers know the existing techniques and extend or adapt them accordingly.The study describes the characteristics of the Arabic language,different types of OCR systems,different stages of the Arabic OCR system,the researcher’s contributions in each step,and the evaluationmetrics for OCR.The study reviews the existing datasets for the Arabic OCR and their characteristics.Additionally,this study implemented some preprocessing and segmentation stages of Arabic OCR.The study compares the performance of the existing methods in terms of recognition accuracy.In addition to researchers’OCRmethods,commercial and open-source systems are used in the comparison.The Arabic language is morphologically rich and written cursive with dots and diacritics above and under the characters.Most of the existing approaches in the literature were evaluated on isolated characters or isolated words under a controlled environment,and few approaches were tested on pagelevel scripts.Some comparative studies show that the accuracy of the existing Arabic OCR commercial systems is low,under 75%for printed text,and further improvement is needed.Moreover,most of the current approaches are offline OCR systems,and there is no remarkable contribution to online OCR systems. 展开更多
关键词 Arabic optical character recognition(OCR) Arabic OCR software Arabic OCR datasets Arabic OCR evaluation
下载PDF
Review of Optical Character Recognition for Power System Image Based on Artificial Intelligence Algorithm
2
作者 Xun Zhang Wanrong Bai Haoyang Cui 《Energy Engineering》 EI 2023年第3期665-679,共15页
Optical Character Recognition(OCR)refers to a technology that uses image processing technology and character recognition algorithms to identify characters on an image.This paper is a deep study on the recognition effe... Optical Character Recognition(OCR)refers to a technology that uses image processing technology and character recognition algorithms to identify characters on an image.This paper is a deep study on the recognition effect of OCR based on Artificial Intelligence(AI)algorithms,in which the different AI algorithms for OCR analysis are classified and reviewed.Firstly,the mechanisms and characteristics of artificial neural network-based OCR are summarized.Secondly,this paper explores machine learning-based OCR,and draws the conclusion that the algorithms available for this form of OCR are still in their infancy,with low generalization and fixed recognition errors,albeit with better recognition effect and higher recognition accuracy.Finally,this paper explores several of the latest algorithms such as deep learning and pattern recognition algorithms.This paper concludes that OCR requires algorithms with higher recognition accuracy. 展开更多
关键词 optical character recognition artificial intelligence power system image artificial neural network machine leaning deep learning
下载PDF
Optical Character Recognition Functionality Introduction in Mobile Application for Car Diary
3
作者 Ioannis Patias 《Journal of Electrical Engineering》 2017年第6期335-339,共5页
The purpose of the paper is to develop a mobile Android application--"Car Log" that gives to users the ability to track all the costs for a vehicle and the ability to add fuel cost data by taking a photo of the cash... The purpose of the paper is to develop a mobile Android application--"Car Log" that gives to users the ability to track all the costs for a vehicle and the ability to add fuel cost data by taking a photo of the cash receipt from the respective gas station where the charging was performed. OCR (optical character recognition) is the conversion of images of typed, handwritten or printed text into machine-encoded text. Once we have the text machine-encoded we can further use it in machine processes, like translation, or extracted, meaning text-to-speech transformed, helping people in simple everyday tasks. Users of the application will be able to enter other completely different costs grouped into categories and other charges. Car Log application quickly and easily can visualize, edit and add different costs for a ear. It also supports the ability to add multiple profiles, by entering data for all ears in a single family, for example, or a small business. The test results are positive thus we intend to further develop a cloud ready application. 展开更多
关键词 optical character recognition mobile application car diary.
下载PDF
Optimised CNN Architectures for Handwritten Arabic Character Recognition
4
作者 Salah Alghyaline 《Computers, Materials & Continua》 SCIE EI 2024年第6期4905-4924,共20页
Handwritten character recognition is considered challenging compared with machine-printed characters due to the different human writing styles.Arabic is morphologically rich,and its characters have a high similarity.T... Handwritten character recognition is considered challenging compared with machine-printed characters due to the different human writing styles.Arabic is morphologically rich,and its characters have a high similarity.The Arabic language includes 28 characters.Each character has up to four shapes according to its location in the word(at the beginning,middle,end,and isolated).This paper proposed 12 CNN architectures for recognizing handwritten Arabic characters.The proposed architectures were derived from the popular CNN architectures,such as VGG,ResNet,and Inception,to make them applicable to recognizing character-size images.The experimental results on three well-known datasets showed that the proposed architectures significantly enhanced the recognition rate compared to the baseline models.The experiments showed that data augmentation improved the models’accuracies on all tested datasets.The proposed model outperformed most of the existing approaches.The best achieved results were 93.05%,98.30%,and 96.88%on the HIJJA,AHCD,and AIA9K datasets. 展开更多
关键词 optical character recognition(OCR) handwritten arabic characters deep learning
下载PDF
CHARACTER DETECTION AND RECOGNITION SYSTEM OF BEER BOTTLES 被引量:1
5
作者 Shen Bangxing Wu Wenjun +2 位作者 Zhang Yepeng Shen Gang Yang Liangen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第3期467-469,共3页
An optical imaging system and a configuration characteristic algorithm are presented to reduce the difficulties in extracting intact characters image with weak contrast, in recognizing characters on fast moving beer b... An optical imaging system and a configuration characteristic algorithm are presented to reduce the difficulties in extracting intact characters image with weak contrast, in recognizing characters on fast moving beer bottles. The system consists of a hardware subsystem, including a rotating device, CCD, 16 mm focus lens, a frame grabber card, a penetrating lighting and a computer, and a software subsystem. The software subsystem performs pretreatment, character segmentation and character recognition. In the pretreatment, the original image is filtered with preset threshold to remove isolated spots. Then the horizontal projection and the vertical projection are used respectively to retrieve the character segmentation. Subsequently, the configuration characteristic algorithm is applied to recognize the characters. The experimental results demonstrate that this system can recognize the characters on beer bottles accurately and effectively; the algorithm is proven fast, stable and robust, making it suitable in the industrial environment. 展开更多
关键词 optical imaging system Raised character recognition Configuration characteristic algorithm
下载PDF
Support Vector Machine Based Handwritten Hindi Character Recognition and Summarization
6
作者 Sunil Dhankhar Mukesh Kumar Gupta +3 位作者 Fida Hussain Memon Surbhi Bhatia Pankaj Dadheech Arwa Mashat 《Computer Systems Science & Engineering》 SCIE EI 2022年第10期397-412,共16页
In today’s digital era,the text may be in form of images.This research aims to deal with the problem by recognizing such text and utilizing the support vector machine(SVM).A lot of work has been done on the English l... In today’s digital era,the text may be in form of images.This research aims to deal with the problem by recognizing such text and utilizing the support vector machine(SVM).A lot of work has been done on the English language for handwritten character recognition but very less work on the under-resourced Hindi language.A method is developed for identifying Hindi language characters that use morphology,edge detection,histograms of oriented gradients(HOG),and SVM classes for summary creation.SVM rank employs the summary to extract essential phrases based on paragraph position,phrase position,numerical data,inverted comma,sentence length,and keywords features.The primary goal of the SVM optimization function is to reduce the number of features by eliminating unnecessary and redundant features.The second goal is to maintain or improve the classification system’s performance.The experiment included news articles from various genres,such as Bollywood,politics,and sports.The proposed method’s accuracy for Hindi character recognition is 96.97%,which is good compared with baseline approaches,and system-generated summaries are compared to human summaries.The evaluated results show a precision of 72%at a compression ratio of 50%and a precision of 60%at a compression ratio of 25%,in comparison to state-of-the-art methods,this is a decent result. 展开更多
关键词 Support vector machine(SVM) optimization PRECISION Hindi character recognition optical character recognition(OCR) automatic summarization and compression ratio
下载PDF
Instance Segmentation of Characters Recognized in Palmyrene Aramaic Inscriptions
7
作者 Adéla Hamplová Alexey Lyavdansky +3 位作者 TomášNovák Ondrej Svojše David Franc Arnošt Veselý 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2869-2889,共21页
This study presents a single-class and multi-class instance segmentation approach applied to ancient Palmyrene inscriptions,employing two state-of-the-art deep learning algorithms,namely YOLOv8 and Roboflow 3.0.The go... This study presents a single-class and multi-class instance segmentation approach applied to ancient Palmyrene inscriptions,employing two state-of-the-art deep learning algorithms,namely YOLOv8 and Roboflow 3.0.The goal is to contribute to the preservation and understanding of historical texts,showcasing the potential of modern deep learning methods in archaeological research.Our research culminates in several key findings and scientific contributions.We comprehensively compare the performance of YOLOv8 and Roboflow 3.0 in the context of Palmyrene character segmentation—this comparative analysis mainly focuses on the strengths and weaknesses of each algorithm in this context.We also created and annotated an extensive dataset of Palmyrene inscriptions,a crucial resource for further research in the field.The dataset serves for training and evaluating the segmentation models.We employ comparative evaluation metrics to quantitatively assess the segmentation results,ensuring the reliability and reproducibility of our findings and we present custom visualization tools for predicted segmentation masks.Our study advances the state of the art in semi-automatic reading of Palmyrene inscriptions and establishes a benchmark for future research.The availability of the Palmyrene dataset and the insights into algorithm performance contribute to the broader understanding of historical text analysis. 展开更多
关键词 optical character recognition instance segmentation Palmyrene ancient languages computer vision
下载PDF
Libyan Licenses Plate Recognition Using Template Matching Method 被引量:1
8
作者 Alla A. El. Senoussi Abdella 《Journal of Computer and Communications》 2016年第7期62-71,共10页
License plate recognition (LPR) applies image processing and character recognition technology to identify vehicles by automatically reading their license plates. The work presented in this paper aims to create a compu... License plate recognition (LPR) applies image processing and character recognition technology to identify vehicles by automatically reading their license plates. The work presented in this paper aims to create a computer vision system capable of taking real-time input image from a static camera and identifying the license plate from extracted image. This problem is examined in two stages: First the license plate region detection and extraction from background and plate segmentation to sub-images, and second the character recognition stage. The method used for the license plate region detection is based on the assumption that the license plate area is a high concentration of smaller details, making it a region of high intensity of edges. The Sobel filter and their vertical and horizontal projections are used to identify the plate region. The result of testing this stage was an accuracy of 67.5%. The final stage of the LPR system is optical character recognition (OCR). The method adopted for this stage is based on template matching using correlation. Testing the performance of OCR resulted in an overall recognition rate of 87.76%. 展开更多
关键词 License Plate recognition optical character recognition Computer Vision System
下载PDF
ERCS: An Efficient and Robust Card Recognition System for Camera-Based Image
9
作者 Zhonghong Ou Baiqiao Xiong +1 位作者 Fenrui Xiao Meina Song 《China Communications》 SCIE CSCD 2020年第12期247-264,共18页
Cards Recognition Systems,(CRSs)are representative computer vision-based applications.They have a broad range of usage scenarios.For example,they can be used to recognize images containing business cards,personal iden... Cards Recognition Systems,(CRSs)are representative computer vision-based applications.They have a broad range of usage scenarios.For example,they can be used to recognize images containing business cards,personal identification cards,and bank cards etc.Even though CRSs have been studied for many years,it is still difficult to recognize cards in camera-based images taken by ordinary devices,e.g.,mobile phones.Diversity of viewpoints and complex backgrounds in the images make the recognition task challenging.Existing systems employing traditional image processing schemes are not robust to varied environment,and are inefficient in dealing with natural images,e.g.,taken by mobile phones.To tackle the problem,we propose a novel framework for card recognition by employing a Convolutional Neutral Network(CNN)based approach.The system localizes the foreground of the image by utilizing a Fully Convolutional Network(FCN).With the help of the foreground map,the system localizes the corners of the card region and employs perspective transformation to alleviate the effects from distortion.Text lines in the card region are detected and recognized by utilizing CNN and Long Short Term Memory,(LSTM).To evaluate the proposed scheme,we collect a large dataset which contains 4,065 images in a variety of shooting scenarios.Experimental results demonstrate the efficacy of the proposed scheme.Specifically,it is able to achieve an accuracy of 90.62%in the end-toend test,outperforming the state-of-the-art. 展开更多
关键词 card localization card recognition optical character recognition CNN
下载PDF
Baseline Isolated Printed Text Image Database for Pashto Script Recognition
10
作者 Arfa Siddiqu Abdul Basit +3 位作者 Waheed Noor Muhammad Asfandyar Khan M.Saeed H.Kakar Azam Khan 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期875-885,共11页
The optical character recognition for the right to left and cursive languages such as Arabic is challenging and received little attention from researchers in the past compared to the other Latin languages.Moreover,the... The optical character recognition for the right to left and cursive languages such as Arabic is challenging and received little attention from researchers in the past compared to the other Latin languages.Moreover,the absence of a standard publicly available dataset for several low-resource lan-guages,including the Pashto language remained a hurdle in the advancement of language processing.Realizing that,a clean dataset is the fundamental and core requirement of character recognition,this research begins with dataset generation and aims at a system capable of complete language understanding.Keeping in view the complete and full autonomous recognition of the cursive Pashto script.The first achievement of this research is a clean and standard dataset for the isolated characters of the Pashto script.In this paper,a database of isolated Pashto characters for forty four alphabets using various font styles has been introduced.In order to overcome the font style shortage,the graphical software Inkscape has been used to generate sufficient image data samples for each character.The dataset has been pre-processed and reduced in dimensions to 32×32 pixels,and further converted into the binary format with a black background and white text so that it resembles the Modified National Institute of Standards and Technology(MNIST)database.The benchmark database is publicly available for further research on the standard GitHub and Kaggle database servers both in pixel and Comma Separated Values(CSV)formats. 展开更多
关键词 Text-image database optical character recognition(OCR) pashto isolated characters visual recognition autonomous language understanding deep learning convolutional neural network(CNN)
下载PDF
航空发动机叶片装配执行过程智能检测及AR引导 被引量:1
11
作者 张杰 王淑侠 +4 位作者 何卫平 李江红 吴世鑫 魏兵钊 王满贤 《计算机集成制造系统》 EI CSCD 北大核心 2024年第4期1263-1272,共10页
为了提高航空发动机叶片装配执行过程的作业智能化程度,本文提出一种航空发动机叶片装配执行过程智能检测及AR引导方法,该方法包括叶片编码识别、物料AR出入库和齐套摆放过程状态检测3个环节。针对航空发动机叶片物料缺乏自动化识别和... 为了提高航空发动机叶片装配执行过程的作业智能化程度,本文提出一种航空发动机叶片装配执行过程智能检测及AR引导方法,该方法包括叶片编码识别、物料AR出入库和齐套摆放过程状态检测3个环节。针对航空发动机叶片物料缺乏自动化识别和智能化纠错的问题,搭建基于编码识别的叶片物料管理架构,提出基于图像处理的叶片编码图像前处理增强操作,并利用贝叶斯纠错对识别结果进行正误判断和纠错校正的后处理操作,提高了叶片编码识别准确率;在物料人工出入库环节,利用AR增强可视化信息辅助用户快速执行作业任务,降低了叶片物料选取作业的时间;针对叶片物料齐套准备过程,构建了基于检测比对的防错纠错系统,避免发生人为错误。所提叶片装配执行过程智能检测及AR增强辅助引导方法可以有效减少人力物力和时间消耗,在推动航空发动机迈向智能化和自动化生产上起到技术支撑作用。 展开更多
关键词 航空发动机叶片 光学字符识别 后处理 增强现实 装配执行过程
下载PDF
基于机器视觉的手写钢板号图像增强及矫正算法研究与应用 被引量:1
12
作者 徐宽广 何东隅 +2 位作者 韩冰 刘宇佳 李家栋 《计算机工程》 CAS CSCD 北大核心 2024年第4期350-356,共7页
钢板号的正确识别检查是实现生产线自动化生产的重要基础条件之一。近年来,许多生产线在备料位置配备了喷印机用于自动标记物料编号。喷印的字迹清晰且耐高温,在没有涂抹的情况下使用钢板号识别设备可以实现接近100%的识别率。然而,由... 钢板号的正确识别检查是实现生产线自动化生产的重要基础条件之一。近年来,许多生产线在备料位置配备了喷印机用于自动标记物料编号。喷印的字迹清晰且耐高温,在没有涂抹的情况下使用钢板号识别设备可以实现接近100%的识别率。然而,由于喷印设备故障或受限于资金和空间等原因,有时无法安装喷印设备,只能依赖人工手写的方式在钢板表面标记编号。与喷印编号相比,手写编号存在书写随意、连笔、字迹歪斜扭曲等复杂情况,这些因素限制了识别系统的准确性。鉴于识别效果较差,通常需要依赖人工目测来辅助识别,从而影响了物料跟踪自动化的实施效果。为了提升手写钢板号的识别效果,对传统机器学习光学字符识别(OCR)文本区域检测算法进行改进研究,并针对手写钢板号的特征,提出一种图像增强和扭曲矫正处理的算法。应用结果表明,该算法可以改善手写钢板号的图像质量和形状,提高识别的准确性。该研究旨在提升手写钢板号识别效果,以解决自动化生产中的难题。通过图像增强和矫正处理,使识别系统更好地处理手写钢板号,推动物料跟踪的自动化实施。 展开更多
关键词 光学字符识别 钢板号识别 手写OCR区域校正 OCR图像预处理 自动识别
下载PDF
人工智能数据采集在慢性乙型肝炎患者真实世界研究中的应用 被引量:1
13
作者 周晓梅 曾涛 +7 位作者 廖莹颖 张一博 李青海 Jaime Smith 张麟 王超 崇雨田 李新华 《暨南大学学报(自然科学与医学版)》 CAS 北大核心 2024年第1期77-83,共7页
目的:开发一套慢性乙型肝炎(乙肝)的人工智能(AI)数据采集工具,以解决传统的多中心数据采集效率低下的问题。方法:基于国际通用的数据标准,将AI的文字识别和自然语言处理应用于慢性乙肝真实世界队列研究数据采集,实现多种格式数据(包括... 目的:开发一套慢性乙型肝炎(乙肝)的人工智能(AI)数据采集工具,以解决传统的多中心数据采集效率低下的问题。方法:基于国际通用的数据标准,将AI的文字识别和自然语言处理应用于慢性乙肝真实世界队列研究数据采集,实现多种格式数据(包括图片格式的原始数据)的电子化采集、结构化处理,随后自动将数据填入研究电子数据采集(REDCap)系统中的电子病历报告表(eCRF)。结果:AI工具辅助数据采集与纯人工数据采集具有相同的平均准确率,均达到98.66%(P=0.23),但前者所需时间减少75.49%(P<0.05)。结论:本研究开发的AI数据采集工具可显著提高研究数据采集效率,为真实世界研究数据采集提供了新的模式。 展开更多
关键词 数据采集 慢性乙型肝炎 人工智能(AI) 自然语言处理 文字识别
下载PDF
面向采购文件的跨模态图片文本命名实体识别 被引量:1
14
作者 杨赛 刘昕 于绍文 《计算机工程与应用》 CSCD 北大核心 2024年第3期213-219,共7页
智慧供应链的数智化采购环节能够提高采购工作效率,节省大量人力成本。采购文件中包括大量证照资质等文件,针对其中图片文本中文字排版参差不齐、扫描图像不清晰等问题,设计了基于深度学习的端到端跨模态命名实体识别模型O2V2BLC(OCR-Ve... 智慧供应链的数智化采购环节能够提高采购工作效率,节省大量人力成本。采购文件中包括大量证照资质等文件,针对其中图片文本中文字排版参差不齐、扫描图像不清晰等问题,设计了基于深度学习的端到端跨模态命名实体识别模型O2V2BLC(OCR-Vector-Bi-LSTM-CRF),从图片文本中识别命名实体。该模型针对光学字符识别技术识别出的图片文本字符,定义连续文本字符边界,将边界内每个文本字符映射为向量,设计双向长短期记忆(Bi-LSTM)网络捕获边界内字符序列的上下文语义,计算字符状态分数矩阵,并通过条件随机场约束字符标记序列规则,获得全局最优标记序列。针对训练集计算命名实体预测误差,动态优化O2V2BLC模型的参数,实现命名实体识别。将该方法应用于采购文件资质类型等图片文本数据,能够有效识别图片中的投标单位、专家姓名、专业名称等命名实体,与条件随机场、隐马尔可夫算法、Bert-Bi-LSTM-CRF模型进行对比,显著提高了实体识别准确率,为智慧供应链的数智化采购提供支持。 展开更多
关键词 智慧供应链 命名实体识别 光学字符识别 双向长短期记忆网络 条件随机场
下载PDF
基于多元特征异构集成深度学习的图像识别模型及其应用 被引量:2
15
作者 汤健 田昊 +3 位作者 夏恒 王子轩 徐喆 韩红桂 《北京工业大学学报》 CAS CSCD 北大核心 2024年第1期27-37,共11页
随着城市矿产资源循环利用技术的不断发展,废旧手机回收已成为当前研究热点。受限于计算资源和数据资源的相对缺乏,目前基于线下智能回收装备的废旧手机识别精度难以达到实际应用。针对上述问题,提出一种基于多元特征异构集成深度学习... 随着城市矿产资源循环利用技术的不断发展,废旧手机回收已成为当前研究热点。受限于计算资源和数据资源的相对缺乏,目前基于线下智能回收装备的废旧手机识别精度难以达到实际应用。针对上述问题,提出一种基于多元特征异构集成深度学习的图像识别模型。首先,利用字符级文本检测算法(character region awareness for text detection,CRAFT)提取手机背部字符区域,再利用ImageNet预训练的VGG19模型作为图像特征嵌入模型,利用迁移学习理念提取待回收手机的局部字符特征和全局图像特征;然后,利用局部特征构建神经网络模式光学字符识别(optical character recognition,OCR)模型,利用全局和局部特征构建非神经网络模式深度森林分类(deep forest classification,DFC)模型;最后,将异构OCR和DFC识别模型输出的结果与向量组合后输入Softmax进行集成,基于权重向量得分最大准则获取最终识别结果。基于废旧手机回收装备的真实图像验证了所提方法的有效性。 展开更多
关键词 废旧手机 图像识别 迁移学习 多元特征 OCR 深度森林 异构集成
下载PDF
基于OCR模型的医疗救治装备数据采集平台设计与实现
16
作者 房珂宇 张鑫 +2 位作者 王钧钧 秦晓丽 陈平 《医疗卫生装备》 CAS 2024年第9期14-20,共7页
目的:设计一种基于光学字符识别(optical character recognition,OCR)模型的医疗救治装备数据采集平台,以实现应急灾害救援条件下医疗数据的自动化采集。方法:该平台以医疗物联网“感知—网络—平台”架构为基础构建。首先,选取Raspberr... 目的:设计一种基于光学字符识别(optical character recognition,OCR)模型的医疗救治装备数据采集平台,以实现应急灾害救援条件下医疗数据的自动化采集。方法:该平台以医疗物联网“感知—网络—平台”架构为基础构建。首先,选取Raspberry Pi 4B作为边缘节点,使用视频采集卡、摄像头、平板计算机等搭建硬件环境。其次,基于卷积循环神经网络(convolutional recurrent neural network,CRNN)优化OCR模型,通过软硬件协同方式实现医疗终端视频流处理与数据提取。最后,采用FineBI工具实现交互界面设计与数据库链接。结果:经实验验证,该平台的硬件环境可靠、稳定,优化后的OCR模型文本识别准确率提升,且采用该平台能够实现对医疗设备数据的快速、自动化采集。结论:采用该平台能够为医护人员提供全面、准确的医疗救治装备数据支撑,有利于提升医疗救治效率。 展开更多
关键词 OCR 应急医疗救援 医疗救治装备 数据采集
下载PDF
基于OCR和Pydicom的PACS数据库数据丢失后的应急与恢复研究
17
作者 朱贵鲜 李桃 +1 位作者 俞磊 丁如一 《中国医疗设备》 2024年第7期74-78,89,共6页
目的在影像归档和通信系统(Picture Archiving and Communication System,PACS)数据库文件丢失或损坏后,实现影像资料和PDF报告关键信息的快速识别和重组,供患者回诊使用。方法利用基于深度学习的光学字符识别技术和Pydicom技术分别读取... 目的在影像归档和通信系统(Picture Archiving and Communication System,PACS)数据库文件丢失或损坏后,实现影像资料和PDF报告关键信息的快速识别和重组,供患者回诊使用。方法利用基于深度学习的光学字符识别技术和Pydicom技术分别读取PDF和DCOM文件中的基本信息,重新建立起患者、影像、报告三者之间的联系,并将关联数据写入数据库。结果经抽样验证,该方法识别同类图像精度的准确度、精准度及召回率均为100%,综合指标F1值为1,在不同组别独立样本间的识别精度表现出一致性。平均每份报告识别时间约为0.14 s(t=-1.005,P=0.315),说明不同组别独立样本间的识别时间表现出一致性。结论该方法的使用能有效缩短数据库故障后患者等待时长,能够在短时间内恢复医疗秩序,可用于PACS数据库数据丢失后的应急处置,也为PACS的数据整合提供依据,为医学影像数据恢复和数据整合提供一种新思路。 展开更多
关键词 光学字符识别 PACS数据 应急处置 深度学习 DCOM信息提取 图像文字识别
下载PDF
基于视觉语言的文字识别方法综述
18
作者 陈曦 陆利坤 +1 位作者 王彤 曾庆涛 《北京印刷学院学报》 2024年第6期35-43,共9页
从光学字符识别(OCR)的基础到自然语言处理在文字识别中的应用,再到视觉语言模型在文字识别领域的最新进展,详细介绍了文字识别的各个步骤,包括图像预处理、特征提取、字符分割和识别,并讨论了多种先进技术和模型如对比学习、多模态融合... 从光学字符识别(OCR)的基础到自然语言处理在文字识别中的应用,再到视觉语言模型在文字识别领域的最新进展,详细介绍了文字识别的各个步骤,包括图像预处理、特征提取、字符分割和识别,并讨论了多种先进技术和模型如对比学习、多模态融合,以及其他视觉语言模型结合的文字识别方法。此外,还比较了不同方法在多个数据集上的性能,并讨论了文字识别领域面临的挑战和限制。 展开更多
关键词 光学字符识别 自然语言处理 对比学习 多模态融合 视觉语言模型
下载PDF
基于OCR模型的通信机房图片归档系统设计 被引量:2
19
作者 周延熙 《信息与电脑》 2024年第1期125-127,共3页
目前通信机房图片归档,人工操作占据了主导地位,然而这种方式存在效率低、易出错等缺陷。在此背景下,文章提出了一种基于光学字符识别(Optical Character Recognition,OCR)模型的通信机房图片归档系统。该系统通过自动识别图片中的文字... 目前通信机房图片归档,人工操作占据了主导地位,然而这种方式存在效率低、易出错等缺陷。在此背景下,文章提出了一种基于光学字符识别(Optical Character Recognition,OCR)模型的通信机房图片归档系统。该系统通过自动识别图片中的文字信息,分析图片所属的机房位置,进而按照机柜位置分类归档图片,实现自动化管理。经过测试,该系统的归档准确率达到了98%以上,显著提高了通信机房图片归档的效率。 展开更多
关键词 图片归档系统 光学字符识别(OCR) 通信机房
下载PDF
基于OCR技术的档案智能化收集方法研究
20
作者 张婷琳 陈祥本 +1 位作者 丁晔 张勇 《无线互联科技》 2024年第19期32-36,共5页
为实现档案信息的智能化管理,文章提出了一种轻量化的端到端档案智能化收集系统。首先采用轻量化的目标检测神经网络PP-PicoDet作为布局检测器,用于对档案材料的版面分析;然后采用SLANet深度学习神经网络进行表格的结构化识别;最后使用... 为实现档案信息的智能化管理,文章提出了一种轻量化的端到端档案智能化收集系统。首先采用轻量化的目标检测神经网络PP-PicoDet作为布局检测器,用于对档案材料的版面分析;然后采用SLANet深度学习神经网络进行表格的结构化识别;最后使用开源的Paddle OCR引擎进行文本识别。系统对表格识别的准确度达到75.8%,印刷体文本识别准确度达到98.3%,总推理时间少于0.85 s。该系统为实现端到端的档案资料智能化收集,提高档案资料整理的效率提出了一种有效解决方案。 展开更多
关键词 档案智能化收集 深度学习 光学字符识别 中文表格 手写体识别
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部