Rooftop units(RTUs)were commonly employed in small commercial buildings that represent that can frequently do not take the higher level maintenance that chillers receive.Fault detection and diagnosis(FDD)tools can be ...Rooftop units(RTUs)were commonly employed in small commercial buildings that represent that can frequently do not take the higher level maintenance that chillers receive.Fault detection and diagnosis(FDD)tools can be employed for RTU methods to ensure essential faults are addressed promptly.In this aspect,this article presents an Optimal Deep Belief Network based Fault Detection and Classification on Packaged Rooftop Units(ODBNFDC-PRTU)model.The ODBNFDC-PRTU technique considers fault diagnosis as amulti-class classification problem and is handled usingDL models.For fault diagnosis in RTUs,the ODBNFDC-PRTU model exploits the deep belief network(DBN)classification model,which identifies seven distinct types of faults.At the same time,the chicken swarm optimization(CSO)algorithm-based hyperparameter tuning technique is utilized for resolving the trial and error hyperparameter selection process,showing the novelty of the work.To illustrate the enhanced performance of the ODBNFDC-PRTU algorithm,a comprehensive set of simulations are applied.The comparison study described the improvement of the ODBNFDC-PRTU method over other recent FDD algorithms with maximum accuracy of 99.30%and TPR of 93.09%.展开更多
High precision and reliable wind speed forecasting have become a challenge for meteorologists.Convective events,namely,strong winds,thunderstorms,and tornadoes,along with large hail,are natural calamities that disturb...High precision and reliable wind speed forecasting have become a challenge for meteorologists.Convective events,namely,strong winds,thunderstorms,and tornadoes,along with large hail,are natural calamities that disturb daily life.For accurate prediction of wind speed and overcoming its uncertainty of change,several prediction approaches have been presented over the last few decades.As wind speed series have higher volatility and nonlinearity,it is urgent to present cutting-edge artificial intelligence(AI)technology.In this aspect,this paper presents an intelligent wind speed prediction using chicken swarm optimization with the hybrid deep learning(IWSP-CSODL)method.The presented IWSP-CSODL model estimates the wind speed using a hybrid deep learning and hyperparameter optimizer.In the presented IWSP-CSODL model,the prediction process is performed via a convolutional neural network(CNN)based long short-term memory with autoencoder(CBLSTMAE)model.To optimally modify the hyperparameters related to the CBLSTMAE model,the chicken swarm optimization(CSO)algorithm is utilized and thereby reduces the mean square error(MSE).The experimental validation of the IWSP-CSODL model is tested using wind series data under three distinct scenarios.The comparative study pointed out the better outcomes of the IWSP-CSODL model over other recent wind speed prediction models.展开更多
About 170 nations have been affected by the COvid VIrus Disease-19(COVID-19)epidemic.On governing bodies across the globe,a lot of stress is created by COVID-19 as there is a continuous rise in patient count testing p...About 170 nations have been affected by the COvid VIrus Disease-19(COVID-19)epidemic.On governing bodies across the globe,a lot of stress is created by COVID-19 as there is a continuous rise in patient count testing positive,and they feel challenging to tackle this situation.Most researchers concentrate on COVID-19 data analysis using the machine learning paradigm in these situations.In the previous works,Long Short-Term Memory(LSTM)was used to predict future COVID-19 cases.According to LSTM network data,the outbreak is expected tofinish by June 2020.However,there is a chance of an over-fitting problem in LSTM and true positive;it may not produce the required results.The COVID-19 dataset has lower accuracy and a higher error rate in the existing system.The proposed method has been introduced to overcome the above-mentioned issues.For COVID-19 prediction,a Linear Decreasing Inertia Weight-based Cat Swarm Optimization with Half Binomial Distribution based Convolutional Neural Network(LDIWCSO-HBDCNN)approach is presented.In this suggested research study,the COVID-19 predicting dataset is employed as an input,and the min-max normalization approach is employed to normalize it.Optimum features are selected using Linear Decreasing Inertia Weight-based Cat Swarm Optimization(LDIWCSO)algorithm,enhancing the accuracy of classification.The Cat Swarm Optimization(CSO)algorithm’s convergence is enhanced using inertia weight in the LDIWCSO algorithm.It is used to select the essential features using the bestfitness function values.For a specified time across India,death and confirmed cases are predicted using the Half Binomial Distribution based Convolutional Neural Network(HBDCNN)technique based on selected features.As demonstrated by empirical observations,the proposed system produces significant performance in terms of f-measure,recall,precision,and accuracy.展开更多
Wireless Sensor Network(WSN)technology is the real-time applica-tion that is growing rapidly as the result of smart environments.Battery power is one of the most significant resources in WSN.For enhancing a power facto...Wireless Sensor Network(WSN)technology is the real-time applica-tion that is growing rapidly as the result of smart environments.Battery power is one of the most significant resources in WSN.For enhancing a power factor,the clustering techniques are used.During the forward of data in WSN,more power is consumed.In the existing system,it works with Load Balanced Cluster-ing Method(LBCM)and provides the lifespan of the network with scalability and reliability.In the existing system,it does not deal with end-to-end delay and deliv-ery of packets.For overcoming these issues in WSN,the proposed Genetic Algo-rithm based on Chicken Swarm Optimization(GA-CSO)with Load Balanced Clustering Method(LBCM)is used.Genetic Algorithm generates chromosomes in an arbitrary method then the chromosomes values are calculated using Fitness Function.Chicken Swarm Optimization(CSO)helps to solve the complex opti-mization problems.Also,it consists of chickens,hens,and rooster.It divides the chicken into clusters.Load Balanced Clustering Method(LBCM)maintains the energy during communication among the sensor nodes and also it balances the load in the gateways.The proposed GA-CSO with LBCM improves the life-span of the network.Moreover,it minimizes the energy consumption and also bal-ances the load over the network.The proposed method outperforms by using the following metrics such as energy efficiency,ratio of packet delivery,throughput of the network,lifetime of the sensor nodes.Therefore,the evaluation result shows the energy efficiency that has achieved 83.56%and the delivery ratio of the packet has reached 99.12%.Also,it has attained linear standard deviation and reduced the end-to-end delay as 97.32 ms.展开更多
The midcourse ballistic closely spaced objects(CSO) create blur pixel-cluster on the space-based infrared focal plane,making the super-resolution of CSO quite necessary.A novel algorithm of CSO joint super-resolutio...The midcourse ballistic closely spaced objects(CSO) create blur pixel-cluster on the space-based infrared focal plane,making the super-resolution of CSO quite necessary.A novel algorithm of CSO joint super-resolution and trajectory estimation is presented.The algorithm combines the focal plane CSO dynamics and radiation models,proposes a novel least square objective function from the space and time information,where CSO radiant intensity is excluded and initial dynamics(position and velocity) are chosen as the model parameters.Subsequently,the quantum-behaved particle swarm optimization(QPSO) is adopted to optimize the objective function to estimate model parameters,and then CSO focal plane trajectories and radiant intensities are computed.Meanwhile,the estimated CSO focal plane trajectories from multiple space-based infrared focal planes are associated and filtered to estimate the CSO stereo ballistic trajectories.Finally,the performance(CSO estimation precision of the focal plane coordinates,radiant intensities,and stereo ballistic trajectories,together with the computation load) of the algorithm is tested,and the results show that the algorithm is effective and feasible.展开更多
With the continuous growth of the tertiary industry and residential loads,balancing the power supply and consumption during peak demand time has become a critical issue.Some studies try to alleviate peak load by incre...With the continuous growth of the tertiary industry and residential loads,balancing the power supply and consumption during peak demand time has become a critical issue.Some studies try to alleviate peak load by increasing power generation on the supply side.Due to the short duration of peak load,this may cause redundant installation capacity.Alternatively,others attempt to shave peak demand by installing energy storage facilities.However,the aforementioned research did not consider interruptible load regulation when optimizing system operations.In fact,regulating interruptible load has great potential for reducing system peak load.In this paper,an interruptible load scheduling model considering the user subsidy rate is first proposed to reduce system peak load and operational costs.This model has fully addressed the constraints of minimum daily load reduction and user interruption load time.After that,by taking a community in Shanghai as an example,the improved chicken swarm optimization algorithm is applied to solve the interruptible load scheduling scheme.Finally,the simulation results validate the efficacy of the proposed optimization algorithm and indicate the significant advantages of the proposed model in alleviating the peak load and reducing operational costs.展开更多
基金This work was supported by Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.2020-0-00107,Development of the technology to automate the recommendations for big data analytic models that define data characteristics and problems).
文摘Rooftop units(RTUs)were commonly employed in small commercial buildings that represent that can frequently do not take the higher level maintenance that chillers receive.Fault detection and diagnosis(FDD)tools can be employed for RTU methods to ensure essential faults are addressed promptly.In this aspect,this article presents an Optimal Deep Belief Network based Fault Detection and Classification on Packaged Rooftop Units(ODBNFDC-PRTU)model.The ODBNFDC-PRTU technique considers fault diagnosis as amulti-class classification problem and is handled usingDL models.For fault diagnosis in RTUs,the ODBNFDC-PRTU model exploits the deep belief network(DBN)classification model,which identifies seven distinct types of faults.At the same time,the chicken swarm optimization(CSO)algorithm-based hyperparameter tuning technique is utilized for resolving the trial and error hyperparameter selection process,showing the novelty of the work.To illustrate the enhanced performance of the ODBNFDC-PRTU algorithm,a comprehensive set of simulations are applied.The comparison study described the improvement of the ODBNFDC-PRTU method over other recent FDD algorithms with maximum accuracy of 99.30%and TPR of 93.09%.
基金This research is funded by Deanship of Scientific Research at Umm Al-Qura University,Grant Code:22UQU4281755DSR01.
文摘High precision and reliable wind speed forecasting have become a challenge for meteorologists.Convective events,namely,strong winds,thunderstorms,and tornadoes,along with large hail,are natural calamities that disturb daily life.For accurate prediction of wind speed and overcoming its uncertainty of change,several prediction approaches have been presented over the last few decades.As wind speed series have higher volatility and nonlinearity,it is urgent to present cutting-edge artificial intelligence(AI)technology.In this aspect,this paper presents an intelligent wind speed prediction using chicken swarm optimization with the hybrid deep learning(IWSP-CSODL)method.The presented IWSP-CSODL model estimates the wind speed using a hybrid deep learning and hyperparameter optimizer.In the presented IWSP-CSODL model,the prediction process is performed via a convolutional neural network(CNN)based long short-term memory with autoencoder(CBLSTMAE)model.To optimally modify the hyperparameters related to the CBLSTMAE model,the chicken swarm optimization(CSO)algorithm is utilized and thereby reduces the mean square error(MSE).The experimental validation of the IWSP-CSODL model is tested using wind series data under three distinct scenarios.The comparative study pointed out the better outcomes of the IWSP-CSODL model over other recent wind speed prediction models.
文摘About 170 nations have been affected by the COvid VIrus Disease-19(COVID-19)epidemic.On governing bodies across the globe,a lot of stress is created by COVID-19 as there is a continuous rise in patient count testing positive,and they feel challenging to tackle this situation.Most researchers concentrate on COVID-19 data analysis using the machine learning paradigm in these situations.In the previous works,Long Short-Term Memory(LSTM)was used to predict future COVID-19 cases.According to LSTM network data,the outbreak is expected tofinish by June 2020.However,there is a chance of an over-fitting problem in LSTM and true positive;it may not produce the required results.The COVID-19 dataset has lower accuracy and a higher error rate in the existing system.The proposed method has been introduced to overcome the above-mentioned issues.For COVID-19 prediction,a Linear Decreasing Inertia Weight-based Cat Swarm Optimization with Half Binomial Distribution based Convolutional Neural Network(LDIWCSO-HBDCNN)approach is presented.In this suggested research study,the COVID-19 predicting dataset is employed as an input,and the min-max normalization approach is employed to normalize it.Optimum features are selected using Linear Decreasing Inertia Weight-based Cat Swarm Optimization(LDIWCSO)algorithm,enhancing the accuracy of classification.The Cat Swarm Optimization(CSO)algorithm’s convergence is enhanced using inertia weight in the LDIWCSO algorithm.It is used to select the essential features using the bestfitness function values.For a specified time across India,death and confirmed cases are predicted using the Half Binomial Distribution based Convolutional Neural Network(HBDCNN)technique based on selected features.As demonstrated by empirical observations,the proposed system produces significant performance in terms of f-measure,recall,precision,and accuracy.
基金supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI)funded by the Ministry of Health&Welfare,Republic of Korea(Grant Number:HI21C1831)the Soonchunhyang University Research Fund.
文摘Wireless Sensor Network(WSN)technology is the real-time applica-tion that is growing rapidly as the result of smart environments.Battery power is one of the most significant resources in WSN.For enhancing a power factor,the clustering techniques are used.During the forward of data in WSN,more power is consumed.In the existing system,it works with Load Balanced Cluster-ing Method(LBCM)and provides the lifespan of the network with scalability and reliability.In the existing system,it does not deal with end-to-end delay and deliv-ery of packets.For overcoming these issues in WSN,the proposed Genetic Algo-rithm based on Chicken Swarm Optimization(GA-CSO)with Load Balanced Clustering Method(LBCM)is used.Genetic Algorithm generates chromosomes in an arbitrary method then the chromosomes values are calculated using Fitness Function.Chicken Swarm Optimization(CSO)helps to solve the complex opti-mization problems.Also,it consists of chickens,hens,and rooster.It divides the chicken into clusters.Load Balanced Clustering Method(LBCM)maintains the energy during communication among the sensor nodes and also it balances the load in the gateways.The proposed GA-CSO with LBCM improves the life-span of the network.Moreover,it minimizes the energy consumption and also bal-ances the load over the network.The proposed method outperforms by using the following metrics such as energy efficiency,ratio of packet delivery,throughput of the network,lifetime of the sensor nodes.Therefore,the evaluation result shows the energy efficiency that has achieved 83.56%and the delivery ratio of the packet has reached 99.12%.Also,it has attained linear standard deviation and reduced the end-to-end delay as 97.32 ms.
基金supported by China Postdoctoral Science Foundation(20080149320080430223)the Natural Science Foundation of An-hui Province (090412043)
文摘The midcourse ballistic closely spaced objects(CSO) create blur pixel-cluster on the space-based infrared focal plane,making the super-resolution of CSO quite necessary.A novel algorithm of CSO joint super-resolution and trajectory estimation is presented.The algorithm combines the focal plane CSO dynamics and radiation models,proposes a novel least square objective function from the space and time information,where CSO radiant intensity is excluded and initial dynamics(position and velocity) are chosen as the model parameters.Subsequently,the quantum-behaved particle swarm optimization(QPSO) is adopted to optimize the objective function to estimate model parameters,and then CSO focal plane trajectories and radiant intensities are computed.Meanwhile,the estimated CSO focal plane trajectories from multiple space-based infrared focal planes are associated and filtered to estimate the CSO stereo ballistic trajectories.Finally,the performance(CSO estimation precision of the focal plane coordinates,radiant intensities,and stereo ballistic trajectories,together with the computation load) of the algorithm is tested,and the results show that the algorithm is effective and feasible.
文摘With the continuous growth of the tertiary industry and residential loads,balancing the power supply and consumption during peak demand time has become a critical issue.Some studies try to alleviate peak load by increasing power generation on the supply side.Due to the short duration of peak load,this may cause redundant installation capacity.Alternatively,others attempt to shave peak demand by installing energy storage facilities.However,the aforementioned research did not consider interruptible load regulation when optimizing system operations.In fact,regulating interruptible load has great potential for reducing system peak load.In this paper,an interruptible load scheduling model considering the user subsidy rate is first proposed to reduce system peak load and operational costs.This model has fully addressed the constraints of minimum daily load reduction and user interruption load time.After that,by taking a community in Shanghai as an example,the improved chicken swarm optimization algorithm is applied to solve the interruptible load scheduling scheme.Finally,the simulation results validate the efficacy of the proposed optimization algorithm and indicate the significant advantages of the proposed model in alleviating the peak load and reducing operational costs.