In this paper,a new communication model is built named grouping D2D(GD2D).Different from the traditional D2D coordination,we proposed GD2D communication in licensed and unlicensed spectrum simultaneously.We formulate ...In this paper,a new communication model is built named grouping D2D(GD2D).Different from the traditional D2D coordination,we proposed GD2D communication in licensed and unlicensed spectrum simultaneously.We formulate a resource allocation problem,which aims at maximizing the energy efficiency(EE)of the system while guaranteeing the quality-of-service(Qos)of users.To efficiently solve this problem,the non-convex optimization problem is first transformed into a convex optimization problem.By transforming the fractional-form problem into an equivalent subtractive-form problem,an iterative power allocation algorithm is proposed to maximize the system EE.Moreover,the optimal closedform power allocation expressions are derived by the Lagrangian approach.Simulation results show that our algorithm achieves higher EE performance than the traditional D2D communication scheme.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant no.61473066 and Grant no.61601109in part by the Fundamental Research Funds for the Central Universities under Grant No.N152305001.
文摘In this paper,a new communication model is built named grouping D2D(GD2D).Different from the traditional D2D coordination,we proposed GD2D communication in licensed and unlicensed spectrum simultaneously.We formulate a resource allocation problem,which aims at maximizing the energy efficiency(EE)of the system while guaranteeing the quality-of-service(Qos)of users.To efficiently solve this problem,the non-convex optimization problem is first transformed into a convex optimization problem.By transforming the fractional-form problem into an equivalent subtractive-form problem,an iterative power allocation algorithm is proposed to maximize the system EE.Moreover,the optimal closedform power allocation expressions are derived by the Lagrangian approach.Simulation results show that our algorithm achieves higher EE performance than the traditional D2D communication scheme.