期刊文献+
共找到21,468篇文章
< 1 2 250 >
每页显示 20 50 100
Milk fat globule membrane supplementation protects againstβ-lactoglobul-ininduced food allergy in mice via upregulation of regulatory T cells and enhancement of intestinal barrier in a microbiota-derived short-chain fatty acids manner 被引量:1
1
作者 Han Gong Tiange Li +3 位作者 Dong Liang Jingxin Gao Xiaohan Liu Xueying Mao 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期124-136,共13页
Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects ... Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects and possible underlying mechanisms of MFGM on cow’s milk allergy(CMA)in aβ-lactoglobulin(BLG)-induced allergic mice model.MFGM was supplemented to allergic mice induced by BLG at a dose of 400 mg/kg body weight.Results demonstrated that MFGM alleviated food allergy symptoms,decreased serum levels of lipopolysaccharide,pro-inflammatory cytokines,immunoglobulin(Ig)E,Ig G1,and Th2 cytokines including interleukin(IL)-4,while increased serum levels of Th1 cytokines including interferon-γand regulatory T cells(Tregs)cytokines including IL-10 and transforming growth factor-β.MFGM modulated gut microbiota and enhanced intestinal barrier of BLG-allergic mice,as evidenced by decreased relative abundance of Desulfobacterota,Rikenellaceae,Lachnospiraceae,and Desulfovibrionaceae,while increased relative abundance of Bacteroidetes,Lactobacillaceae and Muribaculaceae,and enhanced expressions of tight junction proteins including Occludin,Claudin-1 and zonula occludens-1.Furthermore,MFGM increased fecal short-chain fatty acids(SCFAs)levels,which elevated G protein-coupled receptor(GPR)43 and GPR109A expressions.The increased expressions of GPR43 and GPR109A induced CD103+dendritic cells accumulation and promoted Tregs differentiation in mesenteric lymph node to a certain extent.In summary,MFGM alleviated CMA in a BLG-induced allergic mice model through enhancing intestinal barrier and promoting Tregs differentiation,which may be correlated with SCFAs-mediated activation of GPRs.These findings suggest that MFGM may be useful as a promising functional ingredient against CMA. 展开更多
关键词 Cow’s milk allergy Milk fat globule membrane Gut microbiota Short-chain fatty acid G protein-coupled receptor Regulatory T cell
下载PDF
Maternal supplementation with n-3 fatty acids affects placental lipid metabolism, inflammation, oxidative stress, the endocannabinoid system, and the neonate cytokine concentrations in dairy cows
2
作者 Priscila dos Santos Silva Gitit Kra +3 位作者 Yana Butenko Jayasimha Rayalu Daddam Yishai Levin Maya Zachut 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第5期2012-2030,共19页
Background The placenta plays a crucial role in supporting and influencing fetal development.We compared the effects of prepartum supplementation with omega-3(n-3)fatty acid(FA)sources,flaxseed oil(FLX)and fish oil(FO... Background The placenta plays a crucial role in supporting and influencing fetal development.We compared the effects of prepartum supplementation with omega-3(n-3)fatty acid(FA)sources,flaxseed oil(FLX)and fish oil(FO),on the expression of genes and proteins related to lipid metabolism,inflammation,oxidative stress,and the endocannabinoid system(ECS)in the expelled placenta,as well as on FA profile and inflammatory response of neonates.Late-pregnant Holstein dairy cows were supplemented with saturated fat(CTL),FLX,or FO.Placental cotyledons(n=5)were collected immediately after expulsion,and extracted RNA and proteins were analyzed by RTPCR and proteomic analysis.Neonatal blood was assessed for FA composition and concentrations of inflammatory markers.Results FO increased the gene expression of fatty acid binding protein 4(FABP4),interleukin 10(IL-10),catalase(CAT),cannabinoid receptor 1(CNR1),and cannabinoid receptor 2(CNR2)compared with CTL placenta.Gene expression of ECS-enzyme FA-amide hydrolase(FAAH)was lower in FLX and FO than in CTL.Proteomic analysis identified 3,974 proteins;of these,51–59 were differentially abundant between treatments(P≤0.05,|fold change|≥1.5).Top canonical pathways enriched in FLX vs.CTL and in FO vs.CTL were triglyceride metabolism and inflammatory processes.Both n-3 FA increased the placental abundance of FA binding proteins(FABPs)3 and 7.The abundance of CNR1 cannabinoid-receptor-interacting-protein-1(CNRIP1)was reduced in FO vs.FLX.In silico modeling affirmed that bovine FABPs bind to endocannabinoids.The FLX increased the abundance of inflammatory CD44-antigen and secreted-phosphoprotein-1,whereas prostaglandin-endoperoxide synthase 2 was decreased in FO vs.CTL placenta.Maternal FO enriched neonatal plasma with n-3 FAs,and both FLX and FO reduced interleukin-6 concentrations compared with CTL.Conclusion Maternal n-3 FA from FLX and FO differentially affected the bovine placenta;both enhanced lipid metabolism and modulated oxidative stress,however,FO increased some transcriptional ECS components,possibly related to the increased FABPs.Maternal FO induced a unique balance of pro-and anti-inflammatory components in the placenta.Taken together,different sources of n-3 FA during late pregnancy enhanced placental immune and metabolic processes,which may affect the neonatal immune system. 展开更多
关键词 ANTIOXIDANTS Dairy cows Endocannabinoid system INFLAMMATION Omega-3 fatty acids PLACENTA
下载PDF
USP19 Stabilizes TAK1 to Regulate High Glucose/Free Fatty Acid-induced Dysfunction in HK-2 Cells
3
作者 Xiao-hui YAN Yin-na ZHU Yan-ting ZHU 《Current Medical Science》 SCIE CAS 2024年第4期707-717,共11页
Objective Obesity-induced kidney injury contributes to the development of diabetic nephropathy(DN).Here,we identified the functions of ubiquitin-specific peptidase 19(USP19)in HK-2 cells exposed to a combination of hi... Objective Obesity-induced kidney injury contributes to the development of diabetic nephropathy(DN).Here,we identified the functions of ubiquitin-specific peptidase 19(USP19)in HK-2 cells exposed to a combination of high glucose(HG)and free fatty acid(FFA)and determined its association with TGF-beta-activated kinase 1(TAK1).Methods HK-2 cells were exposed to a combination of HG and FFA.USP19 mRNA expression was detected by quantitative RT-PCR(qRT-PCR),and protein analysis was performed by immunoblotting(IB).Cell growth was assessed by Cell Counting Kit-8(CCK-8)viability and 5-ethynyl-2′-deoxyuridine(EdU)proliferation assays.Cell cycle distribution and apoptosis were detected by flow cytometry.The USP19/TAK1 interaction and ubiquitinated TAK1 levels were assayed by coimmunoprecipitation(Co-IP)assays and IB.Results In HG+FFA-challenged HK-2 cells,USP19 was highly expressed.USP19 knockdown attenuated HG+FFA-triggered growth inhibition and apoptosis promotion in HK-2 cells.Moreover,USP19 knockdown alleviated HG+FFA-mediated PTEN-induced putative kinase 1(PINK1)/Parkin pathway inactivation and increased mitochondrial reactive oxygen species(ROS)generation in HK-2 cells.Mechanistically,USP19 stabilized the TAK1 protein through deubiquitination.Importantly,increased TAK1 expression reversed the USP19 knockdown-mediated phenotypic changes and PINK1/Parkin pathway activation in HG+FFA-challenged HK-2 cells.Conclusion The findings revealed that USP19 plays a crucial role in promoting HK-2 cell dysfunction induced by combined stimulation with HG and FFAs by stabilizing TAK1,providing a potential therapeutic strategy for combating DN. 展开更多
关键词 HK-2 cells high glucose free fatty acid DYSFUNCTION USP19 DEUBIQUITINATION
下载PDF
Serum bile acid and unsaturated fatty acid profiles of non-alcoholic fatty liver disease in type 2 diabetic patients
4
作者 Su-Su Feng Si-Jing Wang +8 位作者 Lin Guo Pan-Pan Ma Xiao-Long Ye Ming-Lin Pan Bo Hang Jian-Hua Mao Antoine M Snijders Yi-Bing Lu Da-Fa Ding 《World Journal of Diabetes》 SCIE 2024年第5期898-913,共16页
BACKGROUND The understanding of bile acid(BA)and unsaturated fatty acid(UFA)profiles,as well as their dysregulation,remains elusive in individuals with type 2 diabetes mellitus(T2DM)coexisting with non-alcoholic fatty... BACKGROUND The understanding of bile acid(BA)and unsaturated fatty acid(UFA)profiles,as well as their dysregulation,remains elusive in individuals with type 2 diabetes mellitus(T2DM)coexisting with non-alcoholic fatty liver disease(NAFLD).Investigating these metabolites could offer valuable insights into the pathophy-siology of NAFLD in T2DM.AIM To identify potential metabolite biomarkers capable of distinguishing between NAFLD and T2DM.METHODS A training model was developed involving 399 participants,comprising 113 healthy controls(HCs),134 individuals with T2DM without NAFLD,and 152 individuals with T2DM and NAFLD.External validation encompassed 172 participants.NAFLD patients were divided based on liver fibrosis scores.The analytical approach employed univariate testing,orthogonal partial least squares-discriminant analysis,logistic regression,receiver operating characteristic curve analysis,and decision curve analysis to pinpoint and assess the diagnostic value of serum biomarkers.RESULTS Compared to HCs,both T2DM and NAFLD groups exhibited diminished levels of specific BAs.In UFAs,particular acids exhibited a positive correlation with NAFLD risk in T2DM,while theω-6:ω-3 UFA ratio demonstrated a negative correlation.Levels ofα-linolenic acid andγ-linolenic acid were linked to significant liver fibrosis in NAFLD.The validation cohort substantiated the predictive efficacy of these biomarkers for assessing NAFLD risk in T2DM patients.CONCLUSION This study underscores the connection between altered BA and UFA profiles and the presence of NAFLD in individuals with T2DM,proposing their potential as biomarkers in the pathogenesis of NAFLD. 展开更多
关键词 Bile acid Non-alcoholic fatty liver disease Type 2 diabetes mellitus Unsaturated fatty acid
下载PDF
Effects of forsythin extract in Forsythia leaves on intestinal microbiota and short-chain fatty acids in rats fed a high-fat diet
5
作者 Lanlan Gui Shaokang Wang +6 位作者 Jing Wang Wang Liao Zitong Chen Da Pan Hui Xia Guiju Sun Su Tian 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期659-667,共9页
Forsythia suspensa,belonging to the deciduous shrubs of the Luteaceae family,a traditional Chinese medicine,has effects of alleviating swelling,clearing heat,detoxification and promoting blood circulation.The leaves o... Forsythia suspensa,belonging to the deciduous shrubs of the Luteaceae family,a traditional Chinese medicine,has effects of alleviating swelling,clearing heat,detoxification and promoting blood circulation.The leaves of F.suspensa contain multiple chemical components and have a long history of use in folk medicines and health foods.The purpose of this study was to explore the effects of forsythin extract from F.suspensa leaves on intestinal microbiota and short-chain fatty acid(SCFA)content in rats with obesity induced by a high-fat diet.Forsythin extract in F.suspensa leaves increased the abundance of the intestinal microbiota,ameliorated intestinal microbiota disorders and inhibited the increase in total SCFA content in the intestinal tract in rats with obesity induced by a high-fat diet.These results suggested that forsythin extract in F.suspensa leaves may slow the development of obesity induced by a high-fat diet;thus,its active components and efficacy are worthy of further study. 展开更多
关键词 FORSYTHIN High-fat diet Intestinal microbiota Short-chain fatty acid(SCFA)
下载PDF
Expression and clinical significance of short-chain fatty acids in patients with intrahepatic cholestasis of pregnancy
6
作者 Shuai-Jun Ren Jia-Ting Feng +3 位作者 Ting Xiang Cai-Lian Liao Yu-Ping Zhou Rong-Rong Xuan 《World Journal of Hepatology》 2024年第4期601-611,共11页
BACKGROUND Intrahepatic cholestasis of pregnancy(ICP)is a pregnancy-specific liver condition that typically arises in the middle and late stages of pregnancy.Short-chain fatty acids(SCFAs),prominent metabolites of the... BACKGROUND Intrahepatic cholestasis of pregnancy(ICP)is a pregnancy-specific liver condition that typically arises in the middle and late stages of pregnancy.Short-chain fatty acids(SCFAs),prominent metabolites of the gut microbiota,have significant connections with various pregnancy complications,and some SCFAs hold potential for treating such complications.However,the metabolic profile of SCFAs in patients with ICP remains unclear.AIM To investigate the metabolic profiles and differences in SCFAs present in the maternal and cord blood of patients with ICP and determine the clinical significance of these findings.METHODS Maternal serum and cord blood samples were collected from both patients with ICP(ICP group)and normal pregnant women(NP group).Targeted metabolomics was used to assess the SCFA levels in these samples.RESULTS Significant differences in maternal SCFAs were observed between the ICP and NP groups.Most SCFAs exhibited a consistent declining trend in cord blood samples from the ICP group,mirroring the pattern seen in maternal serum.Correlation analysis revealed a positive correlation between maternal serum SCFAs and cord blood SCFAs[r(Pearson)=0.88,P=7.93e-95].In both maternal serum and cord blood,acetic and caproic acids were identified as key metabolites contributing to the differences in SCFAs between the two groups(variable importance for the projection>1).Receiver operating characteristic analysis demonstrated that multiple SCFAs in maternal blood have excellent diagnostic capabilities for ICP,with caproic acid exhibiting the highest diagnostic efficacy(area under the curve=0.97).CONCLUSION Compared with the NP group,significant alterations were observed in the SCFAs of maternal serum and cord blood in the ICP group,although they displayed distinct patterns of change.Furthermore,the SCFA levels in maternal serum and cord blood were significantly positively correlated.Notably,certain maternal serum SCFAs,specifically caproic and acetic acids,demonstrated excellent diagnostic efficiency for ICP. 展开更多
关键词 Intrahepatic cholestasis of pregnancy Short-chain fatty acids Maternal serum Cord blood Caproic acid
下载PDF
Protective effect of long-chain polyunsaturated fatty acids on hepatorenal syndrome in rats
7
作者 João Bruno Beretta Duailibe Cassiana Macagnan Viau +2 位作者 Jenifer Saffi Sabrina Alves Fernandes Marilene Porawski 《World Journal of Nephrology》 2024年第3期49-61,共13页
BACKGROUND Hepatorenal syndrome(HRS)is the most prevalent form of acute kidney injury in cirrhotic patients.It is characterized by reduced renal blood flow and represents the most severe complication in cirrhotic pati... BACKGROUND Hepatorenal syndrome(HRS)is the most prevalent form of acute kidney injury in cirrhotic patients.It is characterized by reduced renal blood flow and represents the most severe complication in cirrhotic patients with advanced disease.Previous research has indicated that antioxidants can delay the onset of a hyperdynamic circulatory state in cirrhosis and improve renal function in HRS patients.Regular omega-3 supplementation has significantly reduced the risk of liver disease.This supplementation could represent an additional therapy for individuals with HRS.AIM To evaluated the antioxidant effect of omega-3 polyunsaturated fatty acid supplementation on the kidneys of cirrhotic rats.METHODS Secondary biliary cirrhosis was induced in rats by biliary duct ligation(BDL)for 28 d.We used 24 male Wistar rats divided into the following groups:I(control);II(treated with omega-3,1 g/kg of body weight);III(BDL treated with omega-3,1 g/kg of body weight);and IV(BDL without treatment).The animals were killed by overdose of anesthetic;the kidneys were dissected,removed,frozen in liquid nitrogen,and stored in a freezer at-80℃for later analysis.We evaluated oxidative stress,nitric oxide(NO)metabolites,DNA damage by the comet assay,cell viability test,and apoptosis in the kidneys.Data were analyzed by one-way analysis of variance,and means were compared using the Tukey test,with P≤0.05.RESULTS Omega-3 significantly decreased the production of reactive oxygen species(P<0.001)and lipoperoxidation in the kidneys of cirrhotic rats treated with omega-3(P<0.001).The activity of the antioxidant enzymes superoxide dismutase and catalase increased in the BDL+omega-3 group compared to the BDL group(P<0.01).NO production,DNA damage,and caspase-9 cleavage decreased significantly in the omega-3-treated BDL group.There was an increase in mitochondrial electrochemical potential(P<0.001)in BDL treated with omega-3 compared to BDL.No changes in the cell survival index in HRS with omega-3 compared to the control group(P>0.05)were observed.CONCLUSION The study demonstrates that omega-3 can protect cellular integrity and function by increasing antioxidant enzymes,inhibiting the formation of free radicals,and reducing apoptosis. 展开更多
关键词 Long-chain polyunsaturated fatty acids Antioxidant effect Hepatorenal syndrome Liver cirrhosis Reactive oxygen species APOPTOSIS
下载PDF
Different n-6/n-3 polyunsaturated fatty acid ratios affect postprandial metabolism in normal and hypertriglyceridemic rats 被引量:1
8
作者 Ligang Yang Chao Yang +8 位作者 Zhixiu Song Min Wan Hui Xia Xian Yang Dengfeng Xu Da Pan Hechun Liu Shaokang Wang Guiju Sun 《Food Science and Human Wellness》 SCIE CSCD 2023年第4期1157-1166,共10页
Postprandial metabolism plays major roles in many pathological conditions.The n-6/n-3 polyunsaturated fatty acid(PUFA)ratio is closely related to various physiological disorders.This study aimed to investigate the eff... Postprandial metabolism plays major roles in many pathological conditions.The n-6/n-3 polyunsaturated fatty acid(PUFA)ratio is closely related to various physiological disorders.This study aimed to investigate the effects of high fat meals with different n-6/n-3 PUFA ratios on postprandial metabolism in normal control(NC)and hypertriglyceridemia(HTG)rats.The postprandial response of triglyceride(TG)in HTG groups was higher than that in NC groups after different n-6/n-3 PUFA ratio meals.The HTG groups showed higher postprandial total cholesterol(TC)responses than NC groups after 1:1 and 20:1 ratio meals.The 5:1 n-6/n-3 PUFA ratio elicited lower postprandial responses of tumor necrosis factorα(TNF-α)than 1:1 and 10:1 ratios in HTG groups.The postprandial malondialdehyde(MDA)response was lower after a 5:1 n-6/n-3 PUFA ratio meal than 1:1 and 20:1 ratio meals in HTG groups.The 1:1 ratio resulted in a lower postprandial reactive oxygen species(ROS)level than 5:1 and 10:1 n-6/n-3 PUFA ratios in NC groups.The results showed that a low n-6/n-3 PUFA ratio improved postprandial dysmetabolism induced by a high fat meal in NC and HTG rats.A high n-6/n-3 PUFA ratio increased the difference in postprandial metabolism between NC and HTG rats. 展开更多
关键词 Polyunsaturated fatty acid n-6 fatty acids n-3 fatty acids Postprandial metabolism HYPERTRIGLYCERIDEMIA
下载PDF
Carboxyl Ester Lipase Protects Against Metabolic Dysfunction-Associated Steatohepatitis by Binding to Fatty Acid Synthase
9
作者 Yang Song Wei Zhong +9 位作者 Harry Cheuk-Hay Lau Yating Zhang Huayu Guan Mingxu Xie Suki Ha Diwen Shou Yongjian Zhou Hongzhi Xu Jun Yu Xiang Zhang 《Engineering》 SCIE EI CAS CSCD 2024年第10期204-215,共12页
Carboxyl ester lipase(CEL),a pivotal enzyme involved in lipid metabolism,is recurrently mutated in obese mice.Here,we aimed to elucidate the functional significance,molecular mechanism,and therapeutic potential of CEL... Carboxyl ester lipase(CEL),a pivotal enzyme involved in lipid metabolism,is recurrently mutated in obese mice.Here,we aimed to elucidate the functional significance,molecular mechanism,and therapeutic potential of CEL in metabolic dysfunction-associated steatohepatitis(MASH).Hepatocyte-specific carboxyl ester lipase gene(Cel)knockout(Cel^(DHEP))and wildtype(WT)littermates were fed with cholinedeficient high-fat diet(CD-HFD)for 16 weeks,or methionine-and choline-deficient diet(MCD)for three weeks to induce MASH.Liquid chromatography–mass spectrometry and co-immunoprecipitation were employed to identify the downstream targets of CEL.CD-HFD/MCD-fed WT mice received intravenous injections of CEL-adeno-associated viral,serotype 8(AAV8)to induce specific overexpression of CEL in the liver.We observed a decrease in CEL protein levels in MASH induced by CD-HFD or MCD in mice.Cel^(DHEP) mice fed with CD-HFD or MCD exhibited pronounced hepatic steatosis,inflammation,lipid peroxidation,and liver injury compared to WT littermates,accompanied by increased hepatic nuclear factor kappa-light-chain-enhancer of activated B cell(NF-jB)activation.Consistently,Cel knockdown in mouse primary hepatocytes and AML12 cells aggravated lipid accumulation and inflammation,whereas CEL overexpression exerted the opposite effect.Mechanistically,CEL directly bound to fatty acid synthase(FASN),resulting in reduced FASN SUMOylation,which in turn promoted FASN degradation through the proteasome pathway.Furthermore,inhibition of FASN ameliorated hepatocyte lipid accumulation and inflammation induced by Cel knockdown in vivo and in vitro.Hepatocyte-specific CEL overexpression using AAV8-Cel significantly mitigated steatohepatitis in mice fed with CD-HFD or MCD.CEL protects against steatohepatitis development by directly interacting with FASN and suppressing its expression for de novo lipogenesis.CEL overexpression confers a therapeutic benefit in steatohepatitis. 展开更多
关键词 Metabolic dysfunction-associated steatohepatitis Carboxyl ester lipase fatty acid synthase De novo lipogenesis Treatment
下载PDF
Identification and validation of novel prognostic fatty acid metabolic gene signatures in colon adenocarcinoma through systematic approaches
10
作者 HENG ZHANG WENJING CHENG +3 位作者 HAIBO ZHAO WEIDONG CHEN QIUJIE ZHANG QING-QING YU 《Oncology Research》 SCIE 2024年第2期297-308,共12页
Colorectal cancer(CRC)belongs to the class of significantly malignant tumors found in humans.Recently,dysregulated fatty acid metabolism(FAM)has been a topic of attention due to its modulation in cancer,specifically C... Colorectal cancer(CRC)belongs to the class of significantly malignant tumors found in humans.Recently,dysregulated fatty acid metabolism(FAM)has been a topic of attention due to its modulation in cancer,specifically CRC.However,the regulatory FAM pathways in CRC require comprehensive elucidation.Methods:The clinical and gene expression data of 175 fatty acid metabolic genes(FAMGs)linked with colon adenocarcinoma(COAD)and normal cornerstone genes were gathered through The Cancer Genome Atlas(TCGA)-COAD corroborating with the Molecular Signature Database v7.2(MSigDB).Initially,crucial prognostic genes were selected by uni-and multi-variate Cox proportional regression analyses;then,depending upon these identified signature genes and clinical variables,a nomogram was generated.Lastly,to assess tumor immune characteristics,concomitant evaluation of tumor immune evasion/risk scoring were elucidated.Results:A 8-gene signature,including ACBD4,ACOX1,CD36,CPT2,ELOVL3,ELOVL6,ENO3,and SUCLG2,was generated,and depending upon this,CRC patients were categorized within high-risk(H-R)and low-risk(L-R)cohorts.Furthermore,risk and age-based nomograms indicated moderate discrimination and good calibration.The data confirmed that the 8-gene model efficiently predicted CRC patients’prognosis.Moreover,according to the conjoint analysis of tumor immune evasion and the risk scorings,the H-R cohort had an immunosuppressive tumor microenvironment,which caused a substandard prognosis.Conclusion:This investigation established a FAMGs-based prognostic model with substantially high predictive value,providing the possibility for improved individualized treatment for CRC individuals. 展开更多
关键词 fatty acid metabolism Colorectal cancer Gene signatures Machine learning
下载PDF
Electrolyte dependence for the electrochemical decarboxylation of medium-chain fatty acids (n-octanoic acid) into fuel on Pt electrode
11
作者 Zhenmin Zhang Dezhang Ren +5 位作者 Dian Zhang Tiantian Hu Congyuan Zeng Nengneng Xu Zhibao Huo Jinli Qiao 《Materials Reports(Energy)》 EI 2024年第2期64-70,共7页
The deoxygenation of organic acids, important biomass feedstocks and derivatives, to synthesize hydrocarbon products under mild electrochemical conditions, holds significant importance for the production of carbon-neu... The deoxygenation of organic acids, important biomass feedstocks and derivatives, to synthesize hydrocarbon products under mild electrochemical conditions, holds significant importance for the production of carbon-neutral biofuels. There is still limited research on the influential factors of the electrochemical decarboxylation reaction of medium-chain fatty acids. In this study, n-octanoic acid (OA) was chosen as the research subject to investigate the electrochemical decarboxylation behavior of OA on a platinum electrode, focusing on the influence of different alkali metal cations (Li^(+), Na^(+), K^(+)), common anions (SO^(4)^(2−), Cl^(−)), and electrolyte pH. It was found that KOH as an electrolyte exhibited the best performance for OA. Possibly, the larger size of K^(+) increased the alkalinity of the electrode surface, facilitating OA deprotonation. LiOH electrolyte reduced the solubility of OA, thereby inhibiting the decarboxylation reaction. SO^(4)^(2−) exhibited a weak promoting effect on the decarboxylation reaction of OA, while Cl^(−) showed no adverse effect although Cl^(−) may adsorb on the electrode surface. Furthermore, unlike short-chain fatty acids, medium-chain OA can only achieve efficient decarboxylation under alkaline conditions due to its solubility properties. This study provides references and foundations for future efforts to enhance the efficiency of electrochemical decarboxylation synthesis of hydrocarbon biofuels from medium-chain fatty acids. 展开更多
关键词 fatty acids Kolbe reaction DECARBOXYLATION HYDROCARBON ELECTROLYTE
下载PDF
The biosynthesis of alarm pheromone in the wheat aphid Rhopalosiphum padi is regulated by hormones via fatty acid metabolism
12
作者 Chengxian Sun Yaoguo Qin +1 位作者 Julian Chen Zhengxi Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第7期2346-2361,共16页
Aphids are major insect pests in agriculture and forestry worldwide.Following attacks by natural enemies,many aphids release an alarm pheromone to protect their population.In most aphids,the main component of the aphi... Aphids are major insect pests in agriculture and forestry worldwide.Following attacks by natural enemies,many aphids release an alarm pheromone to protect their population.In most aphids,the main component of the aphid alarm pheromone(AAP)is the sesquiterpene hydrocarbon(E)-β-farnesene(EβF).However,the mechanisms behind its biosynthesis and regulation remain poorly understood.In this study,we used the bird cherry–oat aphid Rhopalosiphum padi,which is an important wheat aphid,to investigate the regulatory mechanisms of EβF biosynthesis.Our results showed that EβF biosynthesis occurs during the mature embryo period and the molting period of the 1st-and 2nd-instar nymphs.Triglycerides provide the prerequisite material for EβF production and release.Based on transcriptome sequencing,RNAi analysis,hormone treatments,and quantitative measurements,we found that the biosynthesis of EβF utilizes acetyl coenzyme A produced from fatty acid degradation,which can be suppressed by juvenile hormone but it is promoted by 20-hydroxyecdysone through the modulation of fatty acid metabolism.This is the first systemic study on the modulation of EβF production in aphids.The results of our study provide insights into the molecular regulatory mechanisms of AAP biosynthesis,as well as valuable information for designing potential aphid control strategies. 展开更多
关键词 (E)-β-farnesene critical period for biosynthesis fatty acid metabolism juvenile hormone 20-HYDROXYECDYSONE
下载PDF
Low expression of fatty acid oxidation related gene ACADM indicates poor prognosis of renal clear cell carcinoma and is related to tumor immune infltration
13
作者 JIECHUAN QIU TIANMIN YANG +3 位作者 YANNING SUN KAI SUN YINGKUN XU QINGHUA XIA 《Oncology Research》 SCIE 2024年第3期545-561,共17页
This research aims to identify the key fatty acid beta-oxidation(FAO)genes that are altered in kidney renal clear cell carcinoma(KIRC)and to analyze the role of these genes in KIRC The Gene Expression Omnibus(GEO)and ... This research aims to identify the key fatty acid beta-oxidation(FAO)genes that are altered in kidney renal clear cell carcinoma(KIRC)and to analyze the role of these genes in KIRC The Gene Expression Omnibus(GEO)and FAO datasets were used to identify these key genes.Wilcoxon rank sum test was used to assess the levels of acyl-CoA dehydrogenase medium chain(ACADM)between KIRC and non cancer samples.The logistic regression and Wilcoxon rank sum test were used to explore the association between ACADM and clinical features.The diagnostic performance of ACADM for KIRC was asessed using a diagnostic receiver operating ch aracteristic(ROC)curve.The co-expressed genes of ACADM were identifed in LinkedOmics database,and their function and pathway enrichment were analyzed.The correlation between ACADM expression level and immune infitration was analyzed by Gene Set Variation Analysis(GSVA)method Additionally,the proliferation,migration,and invasion abilities of KIRC cells were assessed after overexpressing ACADM.Following differential analysis and intersection,we identifed six hub genes,induding ACADM.We found that the expression level of ACADM was decreased in KIRC tissues and had a better diagnostic efect(AUC=0.916).Survival analysis suggested that patients with decreased ACADM expression had a worse prognosis.According to correlation analysis,a variety of dinical features were associated with the expression level of ACADML By analyzing the infiltration level of immune cells,we found that ACADM may be related to the enrichment of immune cells.Finally,ACADM overexpression inhibited proliferation,migration,and invasion of KIRC cells.In conclusion,our findings suggest that reduced ACADM expression in KIRC patients is indicative of poor prognosis.These results imply that ACADM may be a diagnostic and prognostic marker for individuals with KIRC,offering a reference for dinicians in diagnosis and treatment. 展开更多
关键词 Kidney renal clear cell carcinoma Acyl CoA dehydrogenase medium chain Immune infiltration fatty acid oxidation Prognosis
下载PDF
The role of gut microbiota and its metabolites short-chain fatty acids in food allergy 被引量:3
14
作者 Chen Chen Chenglong Liu +1 位作者 Ke Zhang Wentong Xue 《Food Science and Human Wellness》 SCIE CSCD 2023年第3期702-710,共9页
Emerging evidence indicated that the increase in food allergy(FA)over the past few decades was associated with the abnormal compositional and metabolic changes of gut microbiota.Gut microbiota played a vital role in m... Emerging evidence indicated that the increase in food allergy(FA)over the past few decades was associated with the abnormal compositional and metabolic changes of gut microbiota.Gut microbiota played a vital role in maintaining the homeostasis of the immune system and the dysbiosis of gut microbiota promoted the occurrence of FA.Recent research suggested that short-chain fatty acids(SCFAs),the main metabolites derived from gut microbiota,contributed to FA protection.Herein,we provided a comprehensive review on the relationship between gut microbiota and FA.The multifaceted mechanisms underlymg beneficial effects of gut microbiota composition/metabolites on the regulation of diverse cellular pathways in intestinal epithelial cells,dendritic cells,innate lymphoid cells,T cells,B cells and mast cells in the immune system were discussed systematically.These findings emphasized the positive function of gut microbiota in FA and provided novel ideas for the treatment or prevention of FA in the future. 展开更多
关键词 Gut microbiota COMPOSITION Short-chain fatty acids Immune system Food allergy
下载PDF
Unlocking a novel determinant of athletic performance:The role of the gut microbiota,short-chain fatty acids,and“biotics”in exercise 被引量:2
15
作者 Kate M.Sales Raylene A.Reimer 《Journal of Sport and Health Science》 SCIE CSCD 2023年第1期36-44,共9页
The gut microbiota refers to the collection of trillions of intestinal microorganisms that modulate central aspects of health and disease through influential effects on host physiology.Recently,a connection has been m... The gut microbiota refers to the collection of trillions of intestinal microorganisms that modulate central aspects of health and disease through influential effects on host physiology.Recently,a connection has been made between the gut microbiota and exercise.Initial investigations demonstrated the beneficial effects of exercise on the gut microbiota,with cross-sectional studies revealing positive correlations between exerciseassociated states,and healthy gut microbiota and exercise interventions showed post-intervention increases in the abundance of beneficial bacterial taxa.More recent investigations have focused on exploring the reverse relationship:the influence of the gut microbiota on exercise performance.Murine investigations have revealed that certain bacterial taxa may enhance endurance exercise performance by augmenting various aspects of lactate metabolism.Further,short-chain fatty acids—which modulate metabolism at various organ sites,including within skeletal muscle—have been shown to enhance endurance exercise capacity in mice.This review highlights what is currently known about the connection between the gut microbiota and exercise,with a particular focus on the ergogenic potential of the gut microbiota and how it may be leveraged to enhance endurance exercise performance. 展开更多
关键词 Exercise performance Gut microbiota Short-chain fatty acids
下载PDF
Supplementing the early diet of broilers with soy protein concentrate can improve intestinal development and enhance short-chain fatty acid-producing microbes and short-chain fatty acids,especially butyric acid 被引量:1
16
作者 Qianyun Zhang Shan Zhang +2 位作者 Shu Wu Marianne Hjollund Madsen Shourong Shi 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第1期278-294,共17页
Background:Research on nutrition in early-life commonly focuses on the maturation of the intestine because the intestinal system is crucial for ensuring continued growth.To explore the importance of early nutrition re... Background:Research on nutrition in early-life commonly focuses on the maturation of the intestine because the intestinal system is crucial for ensuring continued growth.To explore the importance of early nutrition regulation in animals,soy protein concentrate(SPC)was added to the early diet of broilers to investigate its effects on amino acid digestibility,intestinal development,especially intestinal microorganisms,and broiler metabolites.A total of 192 oneday-old Arbor Acres(AA)male broilers were randomly assigned to two experimental treatments with 8 replicates of 12 birds.The control group was fed a basal diet(control),and the treatment group was fed a basal diet supplemented with 12%SPC(SPC12)during the first 10 d(starter phase).From d 11 to 21(grower phase)and d 22 to 42(finisher phase),a basal diet was fed to both treatment groups.Results:SPC reduced the pH value and acid-binding capacity of the starter diet(P<0.05,d 10);SPC in the early diet enhanced the gizzard weight(P<0.05,d 10 and d 42)and the ileum weight(P<0.05,d 10)and decreased the weight and length of the jejunum(P<0.05,d 10)and the relative length of the duodenum and jejunum(P<0.05,d 10).At the same time,SPC enhanced villus height(P<0.05,d 10)and muscle thickness in the jejunum and ileum(P<0.05,d 10)and increased the number of goblet cells in the duodenum(P<0.05,d 10).Meanwhile,SPC increased the Chao1 index and the ACE index(P<0.05,d 10)and altered the composition of caecal microflora at d 10.SPC also increased the relative abundance of Alistipes,Anaerotruncus,Erysipelatoclostridium,Intestinimonas and Flavonifractor bacteria(P<0.05,d 10).At the same time,the concentrations of caecal butyric acid and total short-chain fatty acids(SCFAs)were also increased in the SPC12 group(P<0.05,d 10).Conclusions:In summary,the results showed that supplementing the starter diet of broilers with SPC has a significant effect on the early development of the intestine and the microflora. 展开更多
关键词 BROILER Caecal microbiota Intestinal development Short-chain fatty acids Soy protein concentrate
下载PDF
Supplementation with yak (Bos grunniens) bone collagen hydrolysate altered the structure of gut microbiota and elevated short-chain fatty acid production in mice 被引量:1
17
作者 Zitao Guo Dalong Yi +9 位作者 Bo Hu Lingyu Zhu Ji Zhang Yuliang Yang Chunyu Liu Yi Shi Zhenghua Gu Yu Xin Huaigao Liu Liang Zhang 《Food Science and Human Wellness》 SCIE CSCD 2023年第5期1637-1645,共9页
In this study, yak bone collagen hydrolysate(YBCH)was produced by mixed proteases and provided to standard-diet mice at a different dose(low dose(LD), medium dose(MD), and high dose(HD))to investigate its effects on t... In this study, yak bone collagen hydrolysate(YBCH)was produced by mixed proteases and provided to standard-diet mice at a different dose(low dose(LD), medium dose(MD), and high dose(HD))to investigate its effects on the composition of gut microbiota and short-chain fatty acids(SCFA)production. It was found that YBCH was mainly composed of small molecular peptides whose molecular weight below 2 000 Da. Notably, supplementation with different doses of YBCH could significantly downregulate the ratio of Firmicutes to Bacteroidetes in the fecal microbiota. At the family level, the Lachnospiraceae abundance was significantly reduced in the YBCH gavage groups(mean reduction ratio 41.7 %, 35.2%, and 36.4% for LD, MD, and HD group, respectively). The predicted functions of gut microbes in the MD group were significantly increased at “lipid metabolism” and “glycan biosynthesis and metabolism”. Moreover, the SCFA production in the YBCH groups was elevated. Especially, the concentration of acetic acid, propionic acid, and butyric acid in the MD group was separately increased 79.7%, 89.2%, and 78.8% than that in the NC group. These results indicated that YBCH might be applied in the development of functional food for intestinal microecological regulation. 展开更多
关键词 Yak bone collagen hydrolysate PEPTIDES Gut microbiota Short-chain fatty acid Lachnospiraceae
下载PDF
Cinnamic acid regulates the intestinal microbiome and short-chain fatty acids to treat slow transit constipation 被引量:3
18
作者 Jin-Guang Jiang Qian Luo +4 位作者 Shuang-Shuang Li Tian-Ying Tan Kai Xiong Tao Yang Tian-Bao Xiao 《World Journal of Gastrointestinal Pharmacology and Therapeutics》 2023年第2期4-21,共18页
BACKGROUND Slow transit constipation(STC)is a disorder with delayed colonic transit.Cinnamic acid(CA)is an organic acid in natural plants,such as Radix Scrophulariae(Xuan Shen),with low toxicity and biological activit... BACKGROUND Slow transit constipation(STC)is a disorder with delayed colonic transit.Cinnamic acid(CA)is an organic acid in natural plants,such as Radix Scrophulariae(Xuan Shen),with low toxicity and biological activities to modulate the intestinal microbiome.AIM To explore the potential effects of CA on the intestinal microbiome and the primary endogenous metabolites-short-chain fatty acids(SCFAs)and evaluate the therapeutic effects of CA in STC.METHODS Loperamide was applied to induce STC in mice.The treatment effects of CA on STC mice were assessed from the 24 h defecations,fecal moisture and intestinal transit rate.The enteric neurotransmitters:5-hydroxytryptamine(5-HT)and vasoactive intestinal peptide(VIP)were determined by the enzyme-linked immunosorbent assay.Hematoxylin-eosin and Alcian blue and Periodic acid Schiff staining were used to evaluate intestinal mucosa's histopathological performance and secretory function.16S rDNA was employed to analyze the composition and abundance of the intestinal microbiome.The SCFAs in stool samples were quantitatively detected by gas chromatography-mass spectrometry.RESULTS CA ameliorated the symptoms of STC and treated STC effectively.CA ameliorated the infiltration of neutrophils and lymphocytes,increased the number of goblet cells and acidic mucus secretion of the mucosa.In addition,CA significantly increased the concentration of 5-HT and reduced VIP.CA significantly improved the diversity and abundance of the beneficial microbiome.Furthermore,the production of SCFAs[including acetic acid(AA),butyric acid(BA),propionic acid(PA)and valeric acid(VA)]was significantly promoted by CA.The changed abundance of Firmicutes,Akkermansia,Lachnoclostridium,Monoglobus,UCG.005,Paenalcaligenes,Psychrobacter and Acinetobacter were involved in the production of AA,BA,PA and VA.CONCLUSION CA could treat STC effectively by ameliorating the composition and abundance of the intestinal microbiome to regulate the production of SCFAs. 展开更多
关键词 Slow transit constipation Cinnamic acid Intestinal microbiome Short-chain fatty acids Intestinal motility
下载PDF
Susceptibility of dairy cows to subacute ruminal acidosis is reflected in both prepartum and postpartum bacteria as well as odd-and branched-chain fatty acids in feces 被引量:1
19
作者 Hong Yang Stijn Heirbaut +4 位作者 Xiaoping Jing Nympha De Neve Leen Vandaele Jeyamalar Jeyanathan Veerle Fievez 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第1期229-243,共15页
Background:The transition period is a challenging period for high-producing dairy cattle.Cows in early lactation are considered as a group at risk of subacute ruminal acidosis(SARA).Variability in SARA susceptibility ... Background:The transition period is a challenging period for high-producing dairy cattle.Cows in early lactation are considered as a group at risk of subacute ruminal acidosis(SARA).Variability in SARA susceptibility in early lactation is hypothesized to be reflected in fecal characteristics such as fecal pH,dry matter content,volatile and odd-and branched-chain fatty acids(VFA and OBCFA,respectively),as well as fecal microbiota.This was investigated with 38 periparturient dairy cows,which were classified into four groups differing in median and mean time of reticular pH below 6 as well as area under the curve of pH below 6.Furthermore,we investigated whether fecal differences were already obvious during a period prior to the SARA risk(prepartum).Results:Variation in reticular pH during a 3-week postpartum period was not associated with differences in fecal pH and VFA concentration.In the postpartum period,the copy number of fecal bacteria and methanogens of unsusceptible(UN)cows was higher than moderately susceptible(MS)or susceptible(SU)cows,while the genera Ruminococcus and Prevotellacea_UCG-001 were proportionally less abundant in UN compared with SU cows.Nevertheless,only a minor reduction was observed in iso-BCFA proportions in fecal fatty acids of SU cows,particularly iso-C15:0and iso-C16:0,compared with UN cows.Consistent with the bacterial changes postpartum,the lower abundance of Ruminococcus was already observed in the prepartum fecal bacterial communities of UN cows,whereas Lachnospiraceae_UCG-001 was increased.Nevertheless,no differences were observed in the prepartum fecal VFA or OBCFA profiles among the groups.Prepartum fecal bacterial communities of cows were clustered into two distinct clusters with 70%of the SU cows belonging to cluster 1,in which they represented 60%of the animals.Conclusions:Inter-animal variation in postpartum SARA susceptibility was reflected in post-and prepartum fecal bacterial communities.Differences in prepartum fecal bacterial communities could alert for susceptibility to develop SARA postpartum.Our results generated knowledge on the association between fecal bacteria and SARA development which could be further explored in a prevention strategy. 展开更多
关键词 Fecal bacterial community Fecal odd-and branched-chain fatty acids Inter-animal variation Subacute ruminal acidosis
下载PDF
Novel Lipase from Golden Pompano(Trachinotus ovatus)Viscera:Purification,Characterization,and Application in the Concentrating of n-3 Polyunsaturated Fatty Acids
20
作者 LIU Hongxia LIU Shucheng +4 位作者 ZHANG Xueying LIU Zhongyuan LI Chuan XIA Guanghua SHEN Xuanri 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第2期501-508,共8页
Lipases have been widely applied in a variety of industrial fields,such as food,pharmaceuticals,biofuels,and biotechnology.Recent years have witnessed a great interest in modifying lipids for the production of triacyl... Lipases have been widely applied in a variety of industrial fields,such as food,pharmaceuticals,biofuels,and biotechnology.Recent years have witnessed a great interest in modifying lipids for the production of triacylglycerols enriched with n-3 polyunsaturated fatty acids(PUFAs).Here,a novel salt-tolerant,organic solvent-stable,and bile salt-activated lipase was purified from golden pompano(Trachinotus ovatus)viscera,which was named as golden pompano lipase(GPL).GPL had a specific activity of 57.2U mg^(-1)with an estimated molecular weight of 14 k Da,exhibited optimal activity at 40℃a nd pH 8.0,and showed K_(m)and V_(max)of 40.16μmol L^(-1)and 769.23μmol L^(-1)min^(-1),respectively.GPL activity was enhanced by Mn^(2+)and sodium deoxycholate.It was active in organic solvents,including methanol,ethanol,chloroform,and hexane.GPL also showed a good salinity tolerance of up to 1 mol L^(-1).n-3PUFA enrichment in the glyceride fraction of golden pompano oil was performed by GPL-catalyzed hydrolysis and yielded a total PUFA concentration of 56.99%.EPA,DHA,and DPA were enriched by 10.4-,3.2-,and 1.8-fold of their initial levels,respectively.This study recognized the industrial applicability of GPL to prepare enriched C_(20-22)n-3 PUFA. 展开更多
关键词 golden pompano LIPASE CHARACTERIZATION n-3 polyunsaturated fatty acids
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部