With the rapid development of drones and autonomous vehicles, miniaturized and lightweight vision sensors that can track targets are of great interests. Limited by the flat structure, conventional image sensors apply ...With the rapid development of drones and autonomous vehicles, miniaturized and lightweight vision sensors that can track targets are of great interests. Limited by the flat structure, conventional image sensors apply a large number of lenses to achieve corresponding functions, increasing the overall volume and weight of the system.展开更多
Atom tracking technology enhanced with innovative algorithms has been implemented in this study,utilizing a comprehensive suite of controllers and software independently developed domestically.Leveraging an on-board f...Atom tracking technology enhanced with innovative algorithms has been implemented in this study,utilizing a comprehensive suite of controllers and software independently developed domestically.Leveraging an on-board field-programmable gate array(FPGA)with a core frequency of 100 MHz,our system facilitates reading and writing operations across 16 channels,performing discrete incremental proportional-integral-derivative(PID)calculations within 3.4 microseconds.Building upon this foundation,gradient and extremum algorithms are further integrated,incorporating circular and spiral scanning modes with a horizontal movement accuracy of 0.38 pm.This integration enhances the real-time performance and significantly increases the accuracy of atom tracking.Atom tracking achieves an equivalent precision of at least 142 pm on a highly oriented pyrolytic graphite(HOPG)surface under room temperature atmospheric conditions.Through applying computer vision and image processing algorithms,atom tracking can be used when scanning a large area.The techniques primarily consist of two algorithms:the region of interest(ROI)-based feature matching algorithm,which achieves 97.92%accuracy,and the feature description-based matching algorithm,with an impressive 99.99%accuracy.Both implementation approaches have been tested for scanner drift measurements,and these technologies are scalable and applicable in various domains of scanning probe microscopy with broad application prospects in the field of nanoengineering.展开更多
AIM:To develop and evaluate the validity and reliability of a knowledge,attitude,and practice questionnaire related to vision screening(KAP-VST)among preschool teachers in Malaysia.METHODS:The questionnaire was develo...AIM:To develop and evaluate the validity and reliability of a knowledge,attitude,and practice questionnaire related to vision screening(KAP-VST)among preschool teachers in Malaysia.METHODS:The questionnaire was developed through a literature review and discussions with experts.Content and face validation were conducted by a panel of experts(n=10)and preschool teachers(n=10),respectively.A pilot study was conducted for construct validation(n=161)and test-retest reliability(n=60)of the newly developed questionnaire.RESULTS:Based on the content and face validation,71 items were generated,and 68 items were selected after exploratory factor analysis.The content validity index for items(I-CVI)score ranged from 0.8-1.0,and the content validity index for scale(S-CVI)/Ave was 0.99.Internal consistency was KR^(2)0=0.93 for knowledge,Cronbach’s alpha=0.758 for attitude,and Cronbach’s alpha=0.856 for practice.CONCLUSION:The KAP-VST is a valid and reliable instrument for assessing knowledge,attitude,and practice in relation to vision screening among preschool teachers in Malaysia.展开更多
The emergence of the Internet-of-Things is anticipated to create a vast market for what are known as smart edge devices,opening numerous opportunities across countless domains,including personalized healthcare and adv...The emergence of the Internet-of-Things is anticipated to create a vast market for what are known as smart edge devices,opening numerous opportunities across countless domains,including personalized healthcare and advanced robotics.Leveraging 3D integration,edge devices can achieve unprecedented miniaturization while simultaneously boosting processing power and minimizing energy consumption.Here,we demonstrate a back-end-of-line compatible optoelectronic synapse with a transfer learning method on health care applications,including electroencephalogram(EEG)-based seizure prediction,electromyography(EMG)-based gesture recognition,and electrocardiogram(ECG)-based arrhythmia detection.With experiments on three biomedical datasets,we observe the classification accuracy improvement for the pretrained model with 2.93%on EEG,4.90%on ECG,and 7.92%on EMG,respectively.The optical programming property of the device enables an ultralow power(2.8×10^(-13) J)fine-tuning process and offers solutions for patient-specific issues in edge computing scenarios.Moreover,the device exhibits impressive light-sensitive characteristics that enable a range of light-triggered synaptic functions,making it promising for neuromorphic vision application.To display the benefits of these intricate synaptic properties,a 5×5 optoelectronic synapse array is developed,effectively simulating human visual perception and memory functions.The proposed flexible optoelectronic synapse holds immense potential for advancing the fields of neuromorphic physiological signal processing and artificial visual systems in wearable applications.展开更多
As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from bo...As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research.展开更多
Computer vision(CV)was developed for computers and other systems to act or make recommendations based on visual inputs,such as digital photos,movies,and other media.Deep learning(DL)methods are more successful than ot...Computer vision(CV)was developed for computers and other systems to act or make recommendations based on visual inputs,such as digital photos,movies,and other media.Deep learning(DL)methods are more successful than other traditional machine learning(ML)methods inCV.DL techniques can produce state-of-the-art results for difficult CV problems like picture categorization,object detection,and face recognition.In this review,a structured discussion on the history,methods,and applications of DL methods to CV problems is presented.The sector-wise presentation of applications in this papermay be particularly useful for researchers in niche fields who have limited or introductory knowledge of DL methods and CV.This review will provide readers with context and examples of how these techniques can be applied to specific areas.A curated list of popular datasets and a brief description of them are also included for the benefit of readers.展开更多
Transportation systems primarily depend on vehicular flow on roads. Developed coun-tries have shifted towards automated signal control, which manages and updates signal synchronisation automatically. In contrast, traf...Transportation systems primarily depend on vehicular flow on roads. Developed coun-tries have shifted towards automated signal control, which manages and updates signal synchronisation automatically. In contrast, traffic in underdeveloped countries is mainly governed by manual traffic light systems. These existing manual systems lead to numerous issues, wasting substantial resources such as time, energy, and fuel, as they cannot make real‐time decisions. In this work, we propose an algorithm to determine traffic signal durations based on real‐time vehicle density, obtained from live closed circuit television camera feeds adjacent to traffic signals. The algorithm automates the traffic light system, making decisions based on vehicle density and employing Faster R‐CNN for vehicle detection. Additionally, we have created a local dataset from live streams of Punjab Safe City cameras in collaboration with the local police authority. The proposed algorithm achieves a class accuracy of 96.6% and a vehicle detection accuracy of 95.7%. Across both day and night modes, our proposed method maintains an average precision, recall, F1 score, and vehicle detection accuracy of 0.94, 0.98, 0.96 and 0.95, respectively. Our proposed work surpasses all evaluation metrics compared to state‐of‐the‐art methodologies.展开更多
Intelligent machinery fault diagnosis methods have been popularly and successfully developed in the past decades,and the vibration acceleration data collected by contact accelerometers have been widely investigated.In...Intelligent machinery fault diagnosis methods have been popularly and successfully developed in the past decades,and the vibration acceleration data collected by contact accelerometers have been widely investigated.In many industrial scenarios,contactless sensors are more preferred.The event camera is an emerging bio-inspired technology for vision sensing,which asynchronously records per-pixel brightness change polarity with high temporal resolution and low latency.It offers a promising tool for contactless machine vibration sensing and fault diagnosis.However,the dynamic vision-based methods suffer from variations of practical factors such as camera position,machine operating condition,etc.Furthermore,as a new sensing technology,the labeled dynamic vision data are limited,which generally cannot cover a wide range of machine fault modes.Aiming at these challenges,a novel dynamic vision-based machinery fault diagnosis method is proposed in this paper.It is motivated to explore the abundant vibration acceleration data for enhancing the dynamic vision-based model performance.A crossmodality feature alignment method is thus proposed with deep adversarial neural networks to achieve fault diagnosis knowledge transfer.An event erasing method is further proposed for improving model robustness against variations.The proposed method can effectively identify unseen fault mode with dynamic vision data.Experiments on two rotating machine monitoring datasets are carried out for validations,and the results suggest the proposed method is promising for generalized contactless machinery fault diagnosis.展开更多
AIM:To investigate the efficacy of a new visual acuity(VA)screening method,the baby vision test for young children.METHODS:A total 105 eyes of 65 children aged 2-8y were included in the study.Acuity testing was conduc...AIM:To investigate the efficacy of a new visual acuity(VA)screening method,the baby vision test for young children.METHODS:A total 105 eyes of 65 children aged 2-8y were included in the study.Acuity testing was conducted using a standardized recognition acuity chart(Snellen visual chart:at 3 m)and the baby vision model assessment.The baby vision device includes a screen,a near infrared camera and a computer.Children were seated at a measured distance of 33-40 cm from a display for testing.VA was estimated according to the highest resolution the children could follow.Decimal VA data were converted to logarithm of the minimum angle of resolution(logMAR)for statistical analysis.The VA results for each child were recorded and analyzed for consistency.RESULTS:The mean VA measured using the Snellen visual chart was 0.62±0.32,and that assessed using the baby vision test was 0.66±0.27.The 95%limit of agreement was-0.609 to 0.695,with 95.2%(100/105)plots within the 95%limits of agreement.VA values of the baby vision test were significantly correlated with those of the Snellen chart(R=0.274,P=0.005).CONCLUSION:The baby vision test can be used as a relatively reliable method for estimating VA in young children.This new acuity assessment might be a valid predictor of optotype-measured acuity later in preverbal children.展开更多
AIM:To investigate the frequency and associated factors of accommodation and non-strabismic binocular vision dysfunction among medical university students.METHODS:Totally 158 student volunteers underwent routine visio...AIM:To investigate the frequency and associated factors of accommodation and non-strabismic binocular vision dysfunction among medical university students.METHODS:Totally 158 student volunteers underwent routine vision examination in the optometry clinic of Guangxi Medical University.Their data were used to identify the different types of accommodation and nonstrabismic binocular vision dysfunction and to determine their frequency.Correlation analysis and logistic regression were used to examine the factors associated with these abnormalities.RESULTS:The results showed that 36.71%of the subjects had accommodation and non-strabismic binocular vision issues,with 8.86%being attributed to accommodation dysfunction and 27.85%to binocular abnormalities.Convergence insufficiency(CI)was the most common abnormality,accounting for 13.29%.Those with these abnormalities experienced higher levels of eyestrain(χ2=69.518,P<0.001).The linear correlations were observed between the difference of binocular spherical equivalent(SE)and the index of horizontal esotropia at a distance(r=0.231,P=0.004)and the asthenopia survey scale(ASS)score(r=0.346,P<0.001).Furthermore,the right eye's SE was inversely correlated with the convergence of positive and negative fusion images at close range(r=-0.321,P<0.001),the convergence of negative fusion images at close range(r=-0.294,P<0.001),the vergence facility(VF;r=-0.234,P=0.003),and the set of negative fusion images at far range(r=-0.237,P=0.003).Logistic regression analysis indicated that gender,age,and the difference in right and binocular SE did not influence the emergence of these abnormalities.CONCLUSION:Binocular vision abnormalities are more prevalent than accommodation dysfunction,with CI being the most frequent type.Greater binocular refractive disparity leads to more severe eyestrain symptoms.展开更多
Diabetic retinopathy(DR)is one of the major causes of visual impairment in adults with diabetes.Optical coherence tomography angiography(OCTA)is nowadays widely used as the golden criterion for diagnosing DR.Recently,...Diabetic retinopathy(DR)is one of the major causes of visual impairment in adults with diabetes.Optical coherence tomography angiography(OCTA)is nowadays widely used as the golden criterion for diagnosing DR.Recently,wide-field OCTA(WF-OCTA)provided more abundant information including that of the peripheral retinal degenerative changes and it can contribute in accurately diagnosing DR.The need for an automatic DR diagnostic system based on WF-OCTA pictures attracts more and more attention due to the large diabetic population and the prevalence of retinopathy cases.In this study,automatic diagnosis of DR using vision transformer was performed using WF-OCTA images(12 mm×12 mm single-scan)centered on the fovea as the dataset.WF-OCTA images were automatically classified into four classes:No DR,mild nonproliferative diabetic retinopathy(NPDR),moderate to severe NPDR,and proliferative diabetic retinopathy(PDR).The proposed method for detecting DR on the test set achieves accuracy of 99.55%,sensitivity of 99.49%,and specificity of 99.57%.The accuracy of the method for DR staging reaches up to 99.20%,which has been proven to be higher than that attained by classical convolutional neural network models.Results show that the automatic diagnosis of DR based on vision transformer and WF-OCTA pictures is more effective for detecting and staging DR.展开更多
文摘With the rapid development of drones and autonomous vehicles, miniaturized and lightweight vision sensors that can track targets are of great interests. Limited by the flat structure, conventional image sensors apply a large number of lenses to achieve corresponding functions, increasing the overall volume and weight of the system.
基金Project supported by the National Science Fund for Distinguished Young Scholars(Grant No.T2125014)the Special Fund for Research on National Major Research Instruments of the National Natural Science Foundation of China(Grant No.11927808)the CAS Key Technology Research and Development Team Project(Grant No.GJJSTD20200005)。
文摘Atom tracking technology enhanced with innovative algorithms has been implemented in this study,utilizing a comprehensive suite of controllers and software independently developed domestically.Leveraging an on-board field-programmable gate array(FPGA)with a core frequency of 100 MHz,our system facilitates reading and writing operations across 16 channels,performing discrete incremental proportional-integral-derivative(PID)calculations within 3.4 microseconds.Building upon this foundation,gradient and extremum algorithms are further integrated,incorporating circular and spiral scanning modes with a horizontal movement accuracy of 0.38 pm.This integration enhances the real-time performance and significantly increases the accuracy of atom tracking.Atom tracking achieves an equivalent precision of at least 142 pm on a highly oriented pyrolytic graphite(HOPG)surface under room temperature atmospheric conditions.Through applying computer vision and image processing algorithms,atom tracking can be used when scanning a large area.The techniques primarily consist of two algorithms:the region of interest(ROI)-based feature matching algorithm,which achieves 97.92%accuracy,and the feature description-based matching algorithm,with an impressive 99.99%accuracy.Both implementation approaches have been tested for scanner drift measurements,and these technologies are scalable and applicable in various domains of scanning probe microscopy with broad application prospects in the field of nanoengineering.
文摘AIM:To develop and evaluate the validity and reliability of a knowledge,attitude,and practice questionnaire related to vision screening(KAP-VST)among preschool teachers in Malaysia.METHODS:The questionnaire was developed through a literature review and discussions with experts.Content and face validation were conducted by a panel of experts(n=10)and preschool teachers(n=10),respectively.A pilot study was conducted for construct validation(n=161)and test-retest reliability(n=60)of the newly developed questionnaire.RESULTS:Based on the content and face validation,71 items were generated,and 68 items were selected after exploratory factor analysis.The content validity index for items(I-CVI)score ranged from 0.8-1.0,and the content validity index for scale(S-CVI)/Ave was 0.99.Internal consistency was KR^(2)0=0.93 for knowledge,Cronbach’s alpha=0.758 for attitude,and Cronbach’s alpha=0.856 for practice.CONCLUSION:The KAP-VST is a valid and reliable instrument for assessing knowledge,attitude,and practice in relation to vision screening among preschool teachers in Malaysia.
基金financial support by the Semiconductor Initiative at the King Abdullah University of Science and Technologysupported by King Abdullah University of Science and Technology(KAUST)Research Funding(KRF)under Award No.ORA-2022-5314.
文摘The emergence of the Internet-of-Things is anticipated to create a vast market for what are known as smart edge devices,opening numerous opportunities across countless domains,including personalized healthcare and advanced robotics.Leveraging 3D integration,edge devices can achieve unprecedented miniaturization while simultaneously boosting processing power and minimizing energy consumption.Here,we demonstrate a back-end-of-line compatible optoelectronic synapse with a transfer learning method on health care applications,including electroencephalogram(EEG)-based seizure prediction,electromyography(EMG)-based gesture recognition,and electrocardiogram(ECG)-based arrhythmia detection.With experiments on three biomedical datasets,we observe the classification accuracy improvement for the pretrained model with 2.93%on EEG,4.90%on ECG,and 7.92%on EMG,respectively.The optical programming property of the device enables an ultralow power(2.8×10^(-13) J)fine-tuning process and offers solutions for patient-specific issues in edge computing scenarios.Moreover,the device exhibits impressive light-sensitive characteristics that enable a range of light-triggered synaptic functions,making it promising for neuromorphic vision application.To display the benefits of these intricate synaptic properties,a 5×5 optoelectronic synapse array is developed,effectively simulating human visual perception and memory functions.The proposed flexible optoelectronic synapse holds immense potential for advancing the fields of neuromorphic physiological signal processing and artificial visual systems in wearable applications.
基金National Natural Science Foundation of China(Grant No.62101138)Shandong Natural Science Foundation(Grant No.ZR2021QD148)+1 种基金Guangdong Natural Science Foundation(Grant No.2022A1515012573)Guangzhou Basic and Applied Basic Research Project(Grant No.202102020701)for providing funds for publishing this paper。
文摘As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research.
基金supported by the Project SP2023/074 Application of Machine and Process Control Advanced Methods supported by the Ministry of Education,Youth and Sports,Czech Republic.
文摘Computer vision(CV)was developed for computers and other systems to act or make recommendations based on visual inputs,such as digital photos,movies,and other media.Deep learning(DL)methods are more successful than other traditional machine learning(ML)methods inCV.DL techniques can produce state-of-the-art results for difficult CV problems like picture categorization,object detection,and face recognition.In this review,a structured discussion on the history,methods,and applications of DL methods to CV problems is presented.The sector-wise presentation of applications in this papermay be particularly useful for researchers in niche fields who have limited or introductory knowledge of DL methods and CV.This review will provide readers with context and examples of how these techniques can be applied to specific areas.A curated list of popular datasets and a brief description of them are also included for the benefit of readers.
基金National Key R&D Program of China,Grant/Award Number:2022YFC3303600National Natural Science Foundation of China,Grant/Award Number:62077015Natural Science Foundation of Zhejiang Province,Grant/Award Number:LY23F020010。
文摘Transportation systems primarily depend on vehicular flow on roads. Developed coun-tries have shifted towards automated signal control, which manages and updates signal synchronisation automatically. In contrast, traffic in underdeveloped countries is mainly governed by manual traffic light systems. These existing manual systems lead to numerous issues, wasting substantial resources such as time, energy, and fuel, as they cannot make real‐time decisions. In this work, we propose an algorithm to determine traffic signal durations based on real‐time vehicle density, obtained from live closed circuit television camera feeds adjacent to traffic signals. The algorithm automates the traffic light system, making decisions based on vehicle density and employing Faster R‐CNN for vehicle detection. Additionally, we have created a local dataset from live streams of Punjab Safe City cameras in collaboration with the local police authority. The proposed algorithm achieves a class accuracy of 96.6% and a vehicle detection accuracy of 95.7%. Across both day and night modes, our proposed method maintains an average precision, recall, F1 score, and vehicle detection accuracy of 0.94, 0.98, 0.96 and 0.95, respectively. Our proposed work surpasses all evaluation metrics compared to state‐of‐the‐art methodologies.
基金supported by the National Science Fund for Distinguished Young Scholars of China(52025056)the China Postdoctoral Science Foundation(2023M732789)+1 种基金the China Postdoctoral Innovative Talents Support Program(BX20230290)the Fundamental Research Funds for the Central Universities(xzy012022062).
文摘Intelligent machinery fault diagnosis methods have been popularly and successfully developed in the past decades,and the vibration acceleration data collected by contact accelerometers have been widely investigated.In many industrial scenarios,contactless sensors are more preferred.The event camera is an emerging bio-inspired technology for vision sensing,which asynchronously records per-pixel brightness change polarity with high temporal resolution and low latency.It offers a promising tool for contactless machine vibration sensing and fault diagnosis.However,the dynamic vision-based methods suffer from variations of practical factors such as camera position,machine operating condition,etc.Furthermore,as a new sensing technology,the labeled dynamic vision data are limited,which generally cannot cover a wide range of machine fault modes.Aiming at these challenges,a novel dynamic vision-based machinery fault diagnosis method is proposed in this paper.It is motivated to explore the abundant vibration acceleration data for enhancing the dynamic vision-based model performance.A crossmodality feature alignment method is thus proposed with deep adversarial neural networks to achieve fault diagnosis knowledge transfer.An event erasing method is further proposed for improving model robustness against variations.The proposed method can effectively identify unseen fault mode with dynamic vision data.Experiments on two rotating machine monitoring datasets are carried out for validations,and the results suggest the proposed method is promising for generalized contactless machinery fault diagnosis.
文摘AIM:To investigate the efficacy of a new visual acuity(VA)screening method,the baby vision test for young children.METHODS:A total 105 eyes of 65 children aged 2-8y were included in the study.Acuity testing was conducted using a standardized recognition acuity chart(Snellen visual chart:at 3 m)and the baby vision model assessment.The baby vision device includes a screen,a near infrared camera and a computer.Children were seated at a measured distance of 33-40 cm from a display for testing.VA was estimated according to the highest resolution the children could follow.Decimal VA data were converted to logarithm of the minimum angle of resolution(logMAR)for statistical analysis.The VA results for each child were recorded and analyzed for consistency.RESULTS:The mean VA measured using the Snellen visual chart was 0.62±0.32,and that assessed using the baby vision test was 0.66±0.27.The 95%limit of agreement was-0.609 to 0.695,with 95.2%(100/105)plots within the 95%limits of agreement.VA values of the baby vision test were significantly correlated with those of the Snellen chart(R=0.274,P=0.005).CONCLUSION:The baby vision test can be used as a relatively reliable method for estimating VA in young children.This new acuity assessment might be a valid predictor of optotype-measured acuity later in preverbal children.
基金Supported by the Innovat ion and Entrepreneurship Project for College Students of the First Affiliated Hospital of Guangxi Medical University in 2022 and the Development and Application of Appropriate Medical and Health Technologies in Guangxi(No.S2021093).
文摘AIM:To investigate the frequency and associated factors of accommodation and non-strabismic binocular vision dysfunction among medical university students.METHODS:Totally 158 student volunteers underwent routine vision examination in the optometry clinic of Guangxi Medical University.Their data were used to identify the different types of accommodation and nonstrabismic binocular vision dysfunction and to determine their frequency.Correlation analysis and logistic regression were used to examine the factors associated with these abnormalities.RESULTS:The results showed that 36.71%of the subjects had accommodation and non-strabismic binocular vision issues,with 8.86%being attributed to accommodation dysfunction and 27.85%to binocular abnormalities.Convergence insufficiency(CI)was the most common abnormality,accounting for 13.29%.Those with these abnormalities experienced higher levels of eyestrain(χ2=69.518,P<0.001).The linear correlations were observed between the difference of binocular spherical equivalent(SE)and the index of horizontal esotropia at a distance(r=0.231,P=0.004)and the asthenopia survey scale(ASS)score(r=0.346,P<0.001).Furthermore,the right eye's SE was inversely correlated with the convergence of positive and negative fusion images at close range(r=-0.321,P<0.001),the convergence of negative fusion images at close range(r=-0.294,P<0.001),the vergence facility(VF;r=-0.234,P=0.003),and the set of negative fusion images at far range(r=-0.237,P=0.003).Logistic regression analysis indicated that gender,age,and the difference in right and binocular SE did not influence the emergence of these abnormalities.CONCLUSION:Binocular vision abnormalities are more prevalent than accommodation dysfunction,with CI being the most frequent type.Greater binocular refractive disparity leads to more severe eyestrain symptoms.
基金supported by the National Natural Science Foundation of China(Grant Nos.62175156,81827807,81770940)Science and Technology Commission of Shanghai Municipality(22S31903000,16DZ0501100)Collaborative Innovation Project of Shanghai Institute of Technology(XTCX2022-27).
文摘Diabetic retinopathy(DR)is one of the major causes of visual impairment in adults with diabetes.Optical coherence tomography angiography(OCTA)is nowadays widely used as the golden criterion for diagnosing DR.Recently,wide-field OCTA(WF-OCTA)provided more abundant information including that of the peripheral retinal degenerative changes and it can contribute in accurately diagnosing DR.The need for an automatic DR diagnostic system based on WF-OCTA pictures attracts more and more attention due to the large diabetic population and the prevalence of retinopathy cases.In this study,automatic diagnosis of DR using vision transformer was performed using WF-OCTA images(12 mm×12 mm single-scan)centered on the fovea as the dataset.WF-OCTA images were automatically classified into four classes:No DR,mild nonproliferative diabetic retinopathy(NPDR),moderate to severe NPDR,and proliferative diabetic retinopathy(PDR).The proposed method for detecting DR on the test set achieves accuracy of 99.55%,sensitivity of 99.49%,and specificity of 99.57%.The accuracy of the method for DR staging reaches up to 99.20%,which has been proven to be higher than that attained by classical convolutional neural network models.Results show that the automatic diagnosis of DR based on vision transformer and WF-OCTA pictures is more effective for detecting and staging DR.