The energy saving issue of chilled water system in an intelligent building is analyzed from the systematic point of view, and an optimum scheduling scheme which can save energy of the system facilities and satisfy the...The energy saving issue of chilled water system in an intelligent building is analyzed from the systematic point of view, and an optimum scheduling scheme which can save energy of the system facilities and satisfy the constraints of the real time cold loads and system running is also proposed. It can make the minimum cost of the system by optimizing the number of running chillers, running parameters and the distribution of real time loads of running chillers. The improved genetic algorithm is used in the optimum scheduling scheme. The computation results show that the building energy consumption can be decreased by about 10%.展开更多
The optimum control strategy and the saving potential of all variable chiller plant under the conditions of changing building cooling load and cooling water supply temperature were investigated. Based on a simulation ...The optimum control strategy and the saving potential of all variable chiller plant under the conditions of changing building cooling load and cooling water supply temperature were investigated. Based on a simulation model of water source chiller plant established in dynamic transient simulation program (TRNSYS),the four-variable quadratic orthogonal regression experiments were carried out by taking cooling load,cooling water supply temperature,cooling water flow rate and chilled water flow rate as variables,and the fitting formulas expressing the relationships between the total energy consumption of chiller plant with the four selected parameters was obtained. With the SAS statistical software and MATHEMATICA mathematical software,the optimal chilled water flow rate and cooling water flow rate which result in the minimum total energy consumption were determined under continuously varying cooling load and cooling water supply temperature. With regard to a chiller plant serving an office building in Shanghai,the total energy consumptions under different control strategies were computed in terms of the forecasting function of cooling load and water source temperature. The results show that applying the optimal control strategy to the chiller plant can bring a saving of 23.27% in power compared with the corresponding conventional variable speed plant,indicating that the optimal control strategy can improve the energy efficiency of chiller plant.展开更多
Due to the wide application of floor heating systems, the radiant floor cooling systems has developed rapidly in recent years. In this paper, TRNSYS numerical simulation methods are used to study the influence of chil...Due to the wide application of floor heating systems, the radiant floor cooling systems has developed rapidly in recent years. In this paper, TRNSYS numerical simulation methods are used to study the influence of chilled water supply temperature and flow rate on the cold storage characteristics of a standard floor structure for office buildings in northern China. The results are verified by experimental measurements. The functional relationship between the saturated cold storage time and the chilled water flow rate is quadratic polynomial, while the changes of supply-water temperature have no effect on the saturation time;the supply-water temperature has a linear relationship with the saturated cold storage volume, while the chilled water flow rate has almost no effect on the saturation cold storage volume. The accumulated cold volume of floor changes with time in an exponential distribution with four coefficients, and the floor has the characteristics of rapid cold storage. This paper is instructive for the design, application and promotion of radiant floor cooling systems.展开更多
文摘The energy saving issue of chilled water system in an intelligent building is analyzed from the systematic point of view, and an optimum scheduling scheme which can save energy of the system facilities and satisfy the constraints of the real time cold loads and system running is also proposed. It can make the minimum cost of the system by optimizing the number of running chillers, running parameters and the distribution of real time loads of running chillers. The improved genetic algorithm is used in the optimum scheduling scheme. The computation results show that the building energy consumption can be decreased by about 10%.
基金Project(G-0805-10156) supported by US Energy Foundation
文摘The optimum control strategy and the saving potential of all variable chiller plant under the conditions of changing building cooling load and cooling water supply temperature were investigated. Based on a simulation model of water source chiller plant established in dynamic transient simulation program (TRNSYS),the four-variable quadratic orthogonal regression experiments were carried out by taking cooling load,cooling water supply temperature,cooling water flow rate and chilled water flow rate as variables,and the fitting formulas expressing the relationships between the total energy consumption of chiller plant with the four selected parameters was obtained. With the SAS statistical software and MATHEMATICA mathematical software,the optimal chilled water flow rate and cooling water flow rate which result in the minimum total energy consumption were determined under continuously varying cooling load and cooling water supply temperature. With regard to a chiller plant serving an office building in Shanghai,the total energy consumptions under different control strategies were computed in terms of the forecasting function of cooling load and water source temperature. The results show that applying the optimal control strategy to the chiller plant can bring a saving of 23.27% in power compared with the corresponding conventional variable speed plant,indicating that the optimal control strategy can improve the energy efficiency of chiller plant.
基金financially supported by the Plan of Guidance and Cultivation for Young Innovative Talents of Shandong Provincial Colleges and Universitiesfinancially supported by the National Natural Science Foundation of China(Grant No.51808321)。
文摘Due to the wide application of floor heating systems, the radiant floor cooling systems has developed rapidly in recent years. In this paper, TRNSYS numerical simulation methods are used to study the influence of chilled water supply temperature and flow rate on the cold storage characteristics of a standard floor structure for office buildings in northern China. The results are verified by experimental measurements. The functional relationship between the saturated cold storage time and the chilled water flow rate is quadratic polynomial, while the changes of supply-water temperature have no effect on the saturation time;the supply-water temperature has a linear relationship with the saturated cold storage volume, while the chilled water flow rate has almost no effect on the saturation cold storage volume. The accumulated cold volume of floor changes with time in an exponential distribution with four coefficients, and the floor has the characteristics of rapid cold storage. This paper is instructive for the design, application and promotion of radiant floor cooling systems.