Chimeric antigen receptor T-cesll therapy(CAR–T)has achieved groundbreaking advancements in clinical application,ushering in a new era for innovative cancer treatment.However,the challenges associated with implementi...Chimeric antigen receptor T-cesll therapy(CAR–T)has achieved groundbreaking advancements in clinical application,ushering in a new era for innovative cancer treatment.However,the challenges associated with implementing this novel targeted cell therapy are increasingly significant.Particularly in the clinical management of solid tumors,obstacles such as the immunosuppressive effects of the tumor microenvironment,limited local tumor infiltration capability of CAR–T cells,heterogeneity of tumor targeting antigens,uncertainties surrounding CAR–T quality,control,and clinical adverse reactions have contributed to increased drug resistance and decreased compliance in tumor therapy.These factors have significantly impeded the widespread adoption and utilization of this therapeutic approach.In this paper,we comprehensively analyze recent preclinical and clinical reports on CAR–T therapy while summarizing crucial factors influencing its efficacy.Furthermore,we aim to identify existing solution strategies and explore their current research status.Through this review article,our objective is to broaden perspectives for further exploration into CAR–T therapy strategies and their clinical applications.展开更多
Background: Chimeric antigen receptor-engineered T-cell(CAR-T) therapy is a newly developed immunotherapy used in the treatment of cancers. Because CAR-T therapy has shown great success in treating CD19-positive hemat...Background: Chimeric antigen receptor-engineered T-cell(CAR-T) therapy is a newly developed immunotherapy used in the treatment of cancers. Because CAR-T therapy has shown great success in treating CD19-positive hematological malignancies, its application has been explored in the treatment of solid tumors, such as liver cancer. In this review, we discuss the immune characteristics of liver cancer, the obstacles encountered during the application of CAR-T therapy, and preclinical and clinical progress in the use of CAR-T therapy in patients with liver cancer.Data sources: The data on CAR-T therapy related to liver cancers were collected by searching Pub Med and the Web of Science databases prior to December 2017 with the keywords "chimeric antigen receptor","CAR-T", "liver cancer", "hepatocellular carcinoma", and "solid tumor". Additional articles were identified by manual search of references found in the primary articles. The data for clinical trials were collected by searching Clinical Trials.gov.Results: The liver has a tolerogenic nature in the intrahepatic milieu and its tumor microenvironment significantly affects tumor progression. The obstacles that reduce the efficacy of CAR-T therapy in solid tumors include a lack of specific tumor antigens, limited trafficking and penetration of CAR-T cells to tumor sites, and an immunosuppressive tumor microenvironment. To overcome these obstacles, several strategies have emerged. In addition, several strategies have been developed to manage the side effects of CAR-T, including enhancing the selectivity of CARs and controlling CAR-T activity. To date, no clinical trials of CAR-T therapy against HCC have been completed. However, preclinical studies in vitro and in vivo have shown potent antitumor efficacy. Glypican-3, mucin-1, epithelial cell adhesion molecule, carcinoembryonic antigen, and other targets are currently being studied.Conclusions: The application of CAR-T therapy for liver cancer is just beginning to be explored and more research is needed. However, we are optimistic that CAR-T therapy will offer a new approach for the treatment of liver cancers in the future.展开更多
T cells modified with chimeric antigen receptor are an attractive strategy to treat Epstein-Barr virus(EBV) associated malignancies.The EBV latent membrane protein 1(LMP1) is a 66-KD integral membrane protein enco...T cells modified with chimeric antigen receptor are an attractive strategy to treat Epstein-Barr virus(EBV) associated malignancies.The EBV latent membrane protein 1(LMP1) is a 66-KD integral membrane protein encoded by EBV that consists of transmembrane-spanning loops.Previously,we have identified a functional signal chain variable fragment(scFv) that specifically recognizes LMP1 through phage library screening.Here,we constructed a LMP1 specific chimeric antigen receptor containing anti-LMP1 scFv,the CD28 signalling domain,and the CD3ζchain(HELA/CAR).We tested its functional ability to target LMP1 positive nasopharyngeal carcinoma cells.HELA/CAR cells were efficiently generated using lentivirus vector encoding the LMP1-specific chimeric antigen receptor to infect activated human CD3+ T cells.The HELA/CAR T cells displayed LMP1 specific cytolytic action and produced IFN-γ and IL-2 in response to nasopharyngeal carcinoma cells overexpressing LMP1.To demonstrate in vivo anti-tumor activity,we tested the HELA/CAR T cells in a xenograft model using an LMP1 overexpressing tumor.Intratumoral injection of anti-LMP1 HELA/CAR-T cells significantly reduced tumor growth in vivo.These results show that targeting LMP1 using HELA/CAR cells could represent an alternative therapeutic approach for patients with EBV-positive cancers.展开更多
Relapses remain a major concern in acute leukemia. It is well known that leukemia stem cells(LSCs) hide in hematopoietic niches and escape to the immune system surveillance through the outgrowth of poorly immunogenic ...Relapses remain a major concern in acute leukemia. It is well known that leukemia stem cells(LSCs) hide in hematopoietic niches and escape to the immune system surveillance through the outgrowth of poorly immunogenic tumor-cell variants and the suppression of the active immune response. Despitethe introduction of new reagents and new therapeutic approaches, no treatment strategies have been able to definitively eradicate LSCs. However, recent adoptive immunotherapy in cancer is expected to revolutionize our way to fight against this disease, by redirecting the immune system in order to eliminate relapse issues. Initially described at the onset of the 90's, chimeric antigen receptors(CARs) are recombinant receptors transferred in various T cell subsets, providing specific antigens binding in a non-major histocompatibility complex restricted manner, and effective on a large variety of human leukocyte antigen-divers cell populations. Once transferred, engineered T cells act like an expanding "living drug" specifically targeting the tumor-associated antigen, and ensure long-term antitumor memory. Over the last decades, substantial improvements have been made in CARs design. CAR T cells have finally reached the clinical practice and first clinical trials have shown promising results. In acute lymphoblastic leukemia, high rate of complete and prolonged clinical responses have been observed after anti-CD19 CAR T cell therapy, with specific but manageable adverse events. In this review, our goal was to describe CAR structures and functions, and to summarize recent data regarding pre-clinical studies and clinical trials in acute leukemia.展开更多
Cytokine release syndrome(CRS)is a major obstacle to the widespread clinical application of chimeric antigen receptor(CAR)T cell therapies.CRS can also be induced by infections(such as SARS-CoV-2),drugs(such as therap...Cytokine release syndrome(CRS)is a major obstacle to the widespread clinical application of chimeric antigen receptor(CAR)T cell therapies.CRS can also be induced by infections(such as SARS-CoV-2),drugs(such as therapeutic antibodies),and some autoimmune diseases.Myeloid-derived macrophages play key roles in the pathogenesis of CRS,and participate in the production and release of the core CRS cytokines,including interleukin(IL)-1,IL-6,and interferon-γ.In this review,we summarize the roles of macrophages in CRS and discuss new developments in macrophage activation and the related mechanisms of cytokine regulation in CRS.展开更多
c-Met is a hepatocyte growth factor receptor overexpressed in many tumors such as hepatocellular carcinoma(HCC).Therefore,c-Met may serve as a promising target for HCC immunotherapy.Modifying T cells to express c-Met-...c-Met is a hepatocyte growth factor receptor overexpressed in many tumors such as hepatocellular carcinoma(HCC).Therefore,c-Met may serve as a promising target for HCC immunotherapy.Modifying T cells to express c-Met-specific chimeric antigen receptor(CAR)is an attractive strategy in treating c-Met-positive HCC.This study aimed to systematically evaluate the inhibitory effects of 2^(nd)-and 3^(rd)-generation c-Met CAR-T cells on hepatocellular carcinoma(HCC)cells.Here,2^(nd)-and 3^(rd)-generation c-Met CARs containing an anti-c-Met singlechain variable fragment(scFv)as well as the CD28 signaling domain and CD3ζ(c-Met-28-3ζ),the CD137 signaling domain and CD3ζ(c-Met-137-3ζ),or the CD28 and CD137 signaling domains and CD3ζ(c-Met-28-137-3ζ)were constructed,and their abilities to target c-Met-positive HCC cells were evaluated in vitro and in vivo.All c-Met CARs were stably expressed on T cell membrane,and c-Met CAR-T cells aggregated around c-Met-positive HCC cells and specifically killed them in vitro.c-Met-28-137-3ζCAR-T cells secreted more interferon-gamma(IFN-γ)and interleukin 2(IL-2)than c-Met-28-3ζCAR-T cells and c-Met-137-3ζCAR-T cells.Compared with c-Met low-expressed cells,c-Met CAR-T cells secreted more cytokines when co-cultured with c-Met high-expressed cells.Moreover,c-Met-28-137-3ζCAR-T cells eradicated HCC more effectively in xenograft tumor models compared with the control groups.This study suggests that 3^(rd)-generation c-Met CAR-T cells are more effective in inhibiting c-Met-positive HCC cells than 2^(nd)-generation c-Met CAR-T cells,thereby providing a promising therapeutic intervention for c-Met-positive HCC.展开更多
With the advance of genome engineering technology,chimeric antigen receptors(CARs)-based immunotherapy has become an emerging therapeutic strategy for tumors.Although initially designed for T cells in tumor immunother...With the advance of genome engineering technology,chimeric antigen receptors(CARs)-based immunotherapy has become an emerging therapeutic strategy for tumors.Although initially designed for T cells in tumor immunotherapy,CARs have been exploited to modify the function of natural killer(NK)cells against a variety of tumors,including hepatocellular carcinoma(HCC).CAR-NK cells have the potential to sufficiently kill tumor antigen-expressing HCC cells,independent of major histocompatibility complex matching or prior priming.In this review,we summarize the recent advances in genetic engineering of CAR-NK cells against HCC and discuss the current challenges and prospects of CAR-NK cells as a revolutionary cellular immunotherapy against HCC.展开更多
The advent of chimeric antigen receptor(CAR)-T cell immunotherapies has led to breakthroughs in the treatment of hematological malignancies.However,their success in treating solid tumors has been limited.CAR-natural k...The advent of chimeric antigen receptor(CAR)-T cell immunotherapies has led to breakthroughs in the treatment of hematological malignancies.However,their success in treating solid tumors has been limited.CAR-natural killer(NK)cells have several advantages over CAR-T cells because NK cells can be made from pre-existing cell lines or allogeneic NK cells with a mismatched major histocompatibility complex(MHC),which means they are more likely to become an"off-the-shelf"product.Moreover,they can kill cancer cells via CAR-dependent/independent pathways and have limited toxicity.Macrophages are the most malleable immune cells in the body.These cells can efficiently infiltrate into tumors and are present in large numbers in tumor microenvironments(TMEs).Importantly,CAR-macrophages(CAR-Ms)have recently yielded exciting preclinical results in several solid tumors.Nevertheless,CAR-T,CAR-NK,and CAR-M all have their own advantages and limitations.In this review,we systematically discuss the current status,progress,and the major hurdles of CAR-T cells,CAR-NK cells,and CAR-M as they relate to five aspects:CAR structure,therapeutic mechanisms,the latest research progress,current challenges and solutions,and comparison according to the existing research in order to provide a reasonable option for treating solid tumors in the future.展开更多
Chimeric antigen receptors(CARs)are a breakthrough in genetic engineering that have revolutio nized the field of adoptive cellular therapy(ACT).Cells expressing these receptors are rerouted to a predefined target by t...Chimeric antigen receptors(CARs)are a breakthrough in genetic engineering that have revolutio nized the field of adoptive cellular therapy(ACT).Cells expressing these receptors are rerouted to a predefined target by the inclusion of an antigen-specific binding region within the synthetic CAR construct.The advantage of cells with programmed specificity has been demonstrated clinically in the field of oncology,and it is clear that such cells have greater accuracy,potency,and reduced off-target therapeutic effects compared with their unmodified counterparts.In contrast to conventional T cells(Tconvs),regulatory T cells(Tregs)play a major role in suppressing immune activation and regulating the host immune response.CAR expression within Tregs has been proposed as a therapy for autoimmune and inflammatory diseases,graft-versus-host disease(GVHD),and organ transplant rejectio n.In the latter,they hold immense potential as mediators of immune tolerance for recipients of allotransplants.However,current research into CAR-Treg engineering is extremely limited,and there is uncertainty regarding optimal design for therapeutic use.This review examines the rationale behind the development of CAR-Tregs,their significance for human transplantation,potential designs,safety considerations,and comparisons of CAR-Tregs in transplantation models to date.展开更多
BACKGROUND Chimeric antigen receptor T-Cell(CAR-T)therapy is an effective new treatment for hematologic malignancies.Cytokine release syndrome(CRS)and neurologic toxicity are main toxicities.CRS-induced rhabdomyolysis...BACKGROUND Chimeric antigen receptor T-Cell(CAR-T)therapy is an effective new treatment for hematologic malignancies.Cytokine release syndrome(CRS)and neurologic toxicity are main toxicities.CRS-induced rhabdomyolysis(RM)followed by CART therapy treatment has not been previously reported.CASE SUMMARY We report a case of a 22-year-old woman with relapsed acute lymphoblastic leukemia obtained sequential cluster of differentiation(CD)19 and CD22 CAR-T infusion.This patient experienced grade 3 CRS with RM,mild hypotension requiring intravenous fluids,and mild hypoxia and was managed effectively with the IL-6 receptor antagonist tocilizumab.This patient had no signs of immune effector cell-associated neurologic syndrome.Restaging scans 30 d postCAR-T therapy demonstrated a complete remission,and the symptoms of muscle weakness improved through rehabilitation.CONCLUSION Myalgia is an easily overlooked symptom of severe CRS after CAR-T therapy.It is necessary to monitor myoglobin levels when a patient presents with symptoms of myalgia or acute renal insufficiency.展开更多
BACKGROUND Diffuse large B-cell lymphoma(DLBCL)is curable with first-line chemoimmunotherapy but patients with relapsed/refractory(R/R)DLBCL still face a poor prognosis.For patients with R/R DLBCL,the complete respons...BACKGROUND Diffuse large B-cell lymphoma(DLBCL)is curable with first-line chemoimmunotherapy but patients with relapsed/refractory(R/R)DLBCL still face a poor prognosis.For patients with R/R DLBCL,the complete response rate to traditional next-line therapy is only 7%and the median overall survival is 6.3 mo.Recently,CD19-targeting chimeric antigen receptor T cells(CAR-T)have shown promise in clinical trials.However,approximately 50%of patients treated with CAR-T cells ultimately progress and few salvage therapies are effective.CASE SUMMARY Here,we report on 7 patients with R/R DLBCL whose disease progressed after CAR-T infusion.They received a PD-1 inhibitor(sintilimab)and a histone deacetylase inhibitor(chidamide).Five of the 7 patients tolerated the treatment without any serious adverse events.Two patients discontinued the treatment due to lung infection and rash.At the 20-mo follow-up,the median overall survival of these 7 patients was 6 mo.Of note,there were 2 complete response rates(CRs)and 2 partial response rates(PRs)during this novel therapy,with an overall response rate(ORR)of 57.1%,and one patient had a durable CR that lasted at least 20 mo.CONCLUSION In conclusion,chidamide combined with sintilimab may be a choice for DLBCL patients progressing after CD19-targeting CAR-T therapy.展开更多
BACKGROUND Diffuse large B-cell lymphoma(DLBCL)is a common aggressive non-Hodgkin's lymphoma(NHL),accounting for 30%-40%of adult NHL.Primary testicular(PT)lymphoma is an uncommon extranodal disease representing ap...BACKGROUND Diffuse large B-cell lymphoma(DLBCL)is a common aggressive non-Hodgkin's lymphoma(NHL),accounting for 30%-40%of adult NHL.Primary testicular(PT)lymphoma is an uncommon extranodal disease representing approximately 1%-2%of lymphoma.Approximately 30%–40%of patients are refractory to frontline therapy or relapse after complete remission.Refractory DLBCL responds poorly to other lines of chemotherapy,and experiences short-term survival.CASE SUMMARY We present a 41-year-old male patient who was diagnosed with PT-DLBCL.Further disease progression was observed after multiline chemotherapy.Chimeric antigen receptor T cells(CAR-T)therapy salvaged the patient.Unfortunately,a new mass was observed in the right adrenal area after six months.The patient was administered programmed cell death protein-1(PD-1)inhibitor therapy and maintained progression-free survival at more than 17 mo of follow-up.CONCLUSION Our findings support the potential benefit of CAR-T combined with PD-1 inhibitor therapies in this type of relapsed and refractory PT-DLBCL.展开更多
BACKGROUND Chimeric antigen receptor T cell(CART)therapy has benefited many refractory lymphoma patients,but some patients experience poor effects.Previous studies have shown that programmed cell death protein-1(PD-1)...BACKGROUND Chimeric antigen receptor T cell(CART)therapy has benefited many refractory lymphoma patients,but some patients experience poor effects.Previous studies have shown that programmed cell death protein-1(PD-1)inhibitors can improve and prolong the therapeutic effect of CAR-T cell treatment.CASE SUMMARY A 61-year-old male presented with 15-d history of diarrhea and lower-limb edema.A large mass was detected in the pelvis,and pathology indicated non-Hodgkin diffuse large B-cell lymphoma.After three cycles of the R-CHOP chemotherapeutic regimen,the patient showed three subcutaneous nodules under the left armpit and both sides of the cervical spine.Pathological examination of the nodules indicated DLBCL again.The patient was diagnosed with relapsed and refractory diffuse large B-cell lymphoma.We recommended CAR-T cell treatment.Before treatment,the patient’s T cell function and expression of immune detection points were tested.Expression of PD-1 was obviously increased(52.7%)on cluster of differentiation(CD)3+T cells.The PD-1 inhibitor(3 mg/kg)was infused prior to lymphodepleting chemotherapy with fludarabine and cyclophosphamide.CAR-CD19 T cells of 3×10^(6)/kg and CAR-CD22 T cells 1×10^(6)/kg were infused,respectively.The therapeutic effect was significant,and the deoxyribonucleic acid copy numbers of CAR-CD19 T cells and CAR-CD22 T cells were stable.Presently,the patient has been disease-free for more than 12 mo.CONCLUSION This case suggests that the combination of PD-1 inhibitors and CAR-T cellsimproved therapeutic efficacy in B-cell lymphoma.展开更多
Cellular therapies have revolutionized the treatment of hematological malignancies since their conception and rapid development.Chimeric antigen receptor(CAR)-T cell therapy is the most widely applied cellular therapy...Cellular therapies have revolutionized the treatment of hematological malignancies since their conception and rapid development.Chimeric antigen receptor(CAR)-T cell therapy is the most widely applied cellular therapy.Since the Food and Drug Administration approved two CD19-CAR-T products for clinical treatment of relapsed/refractory acute lymphoblastic leukemia and diffuse large B cell lymphoma in 2017,five more CAR-T cell products were subsequently approved for treating multiple myeloma or B cell malignancies.Moreover,clinical trials of CAR-T cell therapy for treating other hematological malignancies are ongoing.Both China and the United States have contributed significantly to the development of clinical trials.However,CAR-T cell therapy has many limitations such as a high relapse rate,adverse side effects,and restricted availability.Various methods are being implemented in clinical trials to address these issues,some of which have demonstrated promising breakthroughs.This review summarizes developments in CAR-T cell trials and advances in CAR-T cell therapy.展开更多
Adoptive therapeutic immune cells, such as chimeric antigen receptor (CAR)-T cells and natural killer cells, have established a new generation of precision medicine based on which dramatic breakthroughs have been achi...Adoptive therapeutic immune cells, such as chimeric antigen receptor (CAR)-T cells and natural killer cells, have established a new generation of precision medicine based on which dramatic breakthroughs have been achieved in intractable lymphoma treatments. Currently, well-explored approaches focus on autologous cells due to their low immunogenicity, but they are highly restricted by the high costs, time consumption of processing, and the insufficiency of primary cells in some patients. Induced pluripotent stem cells (iPSCs) are cell sources that can theoretically produce indefinite well-differentiated immune cells. Based on the above facts, it may be reasonable to combine the iPSC technology and the CAR design to produce a series of highly controllable and economical "live" drugs. Manufacturing hypoimmunogenic iPSCs by inactivation or over-expression at the genetic level and then arming the derived cells with CAR have emerged as a form of "off-the-shelf" strategy to eliminate tumor cells efficiently and safely in a broader range of patients. This review describes the reasonability, feasibility, superiority, and drawbacks of such approaches, summarizes the current practices and relevant research progress, and provides insights into the possible new paths for personalized cell-based therapies.展开更多
Anti-CD19 chimeric antigen receptor(CAR)-T cell therapy has achieved 40%–50%long-term complete response in relapsed or refractory diffuse large B-cell lymphoma(DLBCL)patients.However,the underlying mechanism of alter...Anti-CD19 chimeric antigen receptor(CAR)-T cell therapy has achieved 40%–50%long-term complete response in relapsed or refractory diffuse large B-cell lymphoma(DLBCL)patients.However,the underlying mechanism of alterations in the tumor microenvironments resulting in CAR-T cell therapy failure needs further investigation.A multi-center phase I/II trial of anti-CD19 CD28z CAR-T(FKC876,ChiCTR1800019661)was conducted.Among 22 evaluable DLBCL patients,seven achieved complete remission,10 experienced partial remissions,while four had stable disease by day 29.Single-cell RNA sequencing results were obtained from core needle biopsy tumor samples collected from long-term complete remission and early-progressed patients,and compared at different stages of treatment.M2-subtype macrophages were significantly involved in both in vivo and in vitro anti-tumor functions of CAR-T cells,leading to CAR-T cell therapy failure and disease progression in DLBCL.Immunosuppressive tumor microenvironments persisted before CAR-T cell therapy,during both cell expansion and disease progression,which could not be altered by infiltrating CAR-T cells.Aberrant metabolism profile of M2-subtype macrophages and those of dysfunctional T cells also contributed to the immunosuppressive tumor microenvironments.Thus,our findings provided a clinical rationale for targeting tumor microenvironments and reprogramming immune cell metabolism as effective therapeutic strategies to prevent lymphoma relapse in future designs of CAR-T cell therapy.展开更多
Although antiretroviral therapy(ART)can reduce the viral load in the plasma to undetectable levels in human immunodeficiency virus(HIV)-infected individuals,ART alone cannot completely eliminate HIV due to its integra...Although antiretroviral therapy(ART)can reduce the viral load in the plasma to undetectable levels in human immunodeficiency virus(HIV)-infected individuals,ART alone cannot completely eliminate HIV due to its integration into the host cell genome to form viral reservoirs.To achieve a functional cure for HIV infection,numerous preclinical and clinical studies are underway to develop innovative immunotherapies to eliminate HIV reservoirs in the absence of ART.Early studies have tested adoptive T-cell therapies in HIV-infected individuals,but their effectiveness was limited.In recent years,with the technological progress and great success of chimeric antigen receptor(CAR)therapy in the treatment of hematological malignancies,CAR therapy has gradually shown its advantages in the field of HIV infection.Many studies have identified a variety of HIV-specific CAR structures and types of cytolytic effector cells.Therefore,CAR therapy may be beneficial for enhancing HIV immunity,achieving HIV control,and eliminating HIV reservoirs,gradually becoming a promising strategy for achieving a functional HIV cure.In this review,we provide an overview of the design of anti-HIV CAR proteins,the cell types of anti-HIV CAR(including CAR T cells,CAR natural killer cells,and CAR-encoding hematopoietic stem/progenitor cells),the clinical application of CAR therapy in HIV infection,and the prospects and challenges in anti-HIV CAR therapy for maintaining viral suppression and eliminating HIV reservoirs.展开更多
The successes achieved by chimeric antigen receptor-modified T (CAR-T) cells in hematological malignancies raised the pos- sibility of their use in non-small lung cancer (NSCLC). In this phase I clinical study (N...The successes achieved by chimeric antigen receptor-modified T (CAR-T) cells in hematological malignancies raised the pos- sibility of their use in non-small lung cancer (NSCLC). In this phase I clinical study (NCT01869166), patients with epidermal growth factor receptor (EGFR)-positive (〉50% expression), relapsed/refractory NSCLC received escalating doses of EGFR-targeted CAR-T cell infusions. The EGFR-targeted CAR-T cells were generated from peripheral blood after a 10 to 13-day in vitro expansion. Serum cytokines in peripheral blood and copy numbers of CAR-EGFR transgene in peripheral blood and in tissue biopsy were monitored periodically. Clinical responses were evaluated with RECISTI.1 and im- mune-related response criteria, and adverse events were graded with CTCAE 4.0. The EGFR-targeted CAR-T cell infusions were well-tolerated without severe toxicity. Of 11 evaluable patients, two patients obtained partial response and five had stable disease for two to eight months. The median dose of transfused CAR+ T cells was 0.97x 10^7 cells kg J (interquar- tile range (IQR), 0.45 to 1.09x 10^7 cells kg 1). Pathological eradication of EGFR positive tumor cells after EGFR-targeted CAR-T cell treatment can be observed in tumor biopsies, along with the CAR-EGFR gene detected in tumor-infiltrating T cells in all four biopsied patients. The EGFR-targeted CAR-T cell therapy is safe and feasible for EGFR-positive advanced re- lapsed/refractory NSCLC.展开更多
Chimeric antigen receptor (CAR) is a recombinant immunoreceptor combining an antibody-derived target- ing fragment with signaling domains capable of acti- vating cells, which endows T cells with the ability to recog...Chimeric antigen receptor (CAR) is a recombinant immunoreceptor combining an antibody-derived target- ing fragment with signaling domains capable of acti- vating cells, which endows T cells with the ability to recognize tumor-associated surface antigens indepen- dent of the expression of major histocompatibiiity complex (MHC) molecules. Recent early-phase clinical trials of CAR-modified T (CAR-T) cells for relapsed or refractory B cell malignancies have demonstrated promising results (that is, anti-CD19 CAR-T in B cell acute lymphoblastic leukemia (B-ALL)). Given this suc- cess, broadening the clinical experience of CAR-T cell therapy beyond hematological malignancies has been actively investigated. Here we discuss the basic design of CAR and review the clinical results from the studies of CAR-T cells in B cell leukemia and lymphoma, and several solid tumors. We additionally discuss the major challenges in the further development and strategies for increasing anti-tumor activity and safety, as well as for successful commercial translation.展开更多
Chimeric antigen receptor (CAR) T cell therapy is a promising cancer treatment that has recently been undergoing rapid development. However, there are still some major challenges, including precise tumor targeting t...Chimeric antigen receptor (CAR) T cell therapy is a promising cancer treatment that has recently been undergoing rapid development. However, there are still some major challenges, including precise tumor targeting to avoid off-target or "on-target/off-tumor" toxicity, adequate T cell infiltration and migration to solid tumors and T cell proliferation and persistence across the physical and biochemical barriers of solid tumors. In this review, we focus on the primary challenges and strafegies to design safe and effective CAR T cells, including using novel cutting-edge technologies for CAR and vecfor designs to increase both the safety and efficacy, further T cell modification to overcome the tumorassociated immune suppression, and using gene editing technologies to generate universal CAR T cells. All these efforts promote the development and evolution of CAR T cell therapy and move toward our ultimate goal--curing cancer with high safety, high efficacy, and low cost.展开更多
基金funded by 2023 Sichuan Scientific and Technological Achievements Transformation Project.Project Number:2023JDZH0024.
文摘Chimeric antigen receptor T-cesll therapy(CAR–T)has achieved groundbreaking advancements in clinical application,ushering in a new era for innovative cancer treatment.However,the challenges associated with implementing this novel targeted cell therapy are increasingly significant.Particularly in the clinical management of solid tumors,obstacles such as the immunosuppressive effects of the tumor microenvironment,limited local tumor infiltration capability of CAR–T cells,heterogeneity of tumor targeting antigens,uncertainties surrounding CAR–T quality,control,and clinical adverse reactions have contributed to increased drug resistance and decreased compliance in tumor therapy.These factors have significantly impeded the widespread adoption and utilization of this therapeutic approach.In this paper,we comprehensively analyze recent preclinical and clinical reports on CAR–T therapy while summarizing crucial factors influencing its efficacy.Furthermore,we aim to identify existing solution strategies and explore their current research status.Through this review article,our objective is to broaden perspectives for further exploration into CAR–T therapy strategies and their clinical applications.
文摘Background: Chimeric antigen receptor-engineered T-cell(CAR-T) therapy is a newly developed immunotherapy used in the treatment of cancers. Because CAR-T therapy has shown great success in treating CD19-positive hematological malignancies, its application has been explored in the treatment of solid tumors, such as liver cancer. In this review, we discuss the immune characteristics of liver cancer, the obstacles encountered during the application of CAR-T therapy, and preclinical and clinical progress in the use of CAR-T therapy in patients with liver cancer.Data sources: The data on CAR-T therapy related to liver cancers were collected by searching Pub Med and the Web of Science databases prior to December 2017 with the keywords "chimeric antigen receptor","CAR-T", "liver cancer", "hepatocellular carcinoma", and "solid tumor". Additional articles were identified by manual search of references found in the primary articles. The data for clinical trials were collected by searching Clinical Trials.gov.Results: The liver has a tolerogenic nature in the intrahepatic milieu and its tumor microenvironment significantly affects tumor progression. The obstacles that reduce the efficacy of CAR-T therapy in solid tumors include a lack of specific tumor antigens, limited trafficking and penetration of CAR-T cells to tumor sites, and an immunosuppressive tumor microenvironment. To overcome these obstacles, several strategies have emerged. In addition, several strategies have been developed to manage the side effects of CAR-T, including enhancing the selectivity of CARs and controlling CAR-T activity. To date, no clinical trials of CAR-T therapy against HCC have been completed. However, preclinical studies in vitro and in vivo have shown potent antitumor efficacy. Glypican-3, mucin-1, epithelial cell adhesion molecule, carcinoembryonic antigen, and other targets are currently being studied.Conclusions: The application of CAR-T therapy for liver cancer is just beginning to be explored and more research is needed. However, we are optimistic that CAR-T therapy will offer a new approach for the treatment of liver cancers in the future.
基金supported in part by grants from the Special Fund of Clinical Medicine in Jiangsu Province(BL2013038)the Graduate Student Innovation Fund(CXZZ12_0563)
文摘T cells modified with chimeric antigen receptor are an attractive strategy to treat Epstein-Barr virus(EBV) associated malignancies.The EBV latent membrane protein 1(LMP1) is a 66-KD integral membrane protein encoded by EBV that consists of transmembrane-spanning loops.Previously,we have identified a functional signal chain variable fragment(scFv) that specifically recognizes LMP1 through phage library screening.Here,we constructed a LMP1 specific chimeric antigen receptor containing anti-LMP1 scFv,the CD28 signalling domain,and the CD3ζchain(HELA/CAR).We tested its functional ability to target LMP1 positive nasopharyngeal carcinoma cells.HELA/CAR cells were efficiently generated using lentivirus vector encoding the LMP1-specific chimeric antigen receptor to infect activated human CD3+ T cells.The HELA/CAR T cells displayed LMP1 specific cytolytic action and produced IFN-γ and IL-2 in response to nasopharyngeal carcinoma cells overexpressing LMP1.To demonstrate in vivo anti-tumor activity,we tested the HELA/CAR T cells in a xenograft model using an LMP1 overexpressing tumor.Intratumoral injection of anti-LMP1 HELA/CAR-T cells significantly reduced tumor growth in vivo.These results show that targeting LMP1 using HELA/CAR cells could represent an alternative therapeutic approach for patients with EBV-positive cancers.
文摘Relapses remain a major concern in acute leukemia. It is well known that leukemia stem cells(LSCs) hide in hematopoietic niches and escape to the immune system surveillance through the outgrowth of poorly immunogenic tumor-cell variants and the suppression of the active immune response. Despitethe introduction of new reagents and new therapeutic approaches, no treatment strategies have been able to definitively eradicate LSCs. However, recent adoptive immunotherapy in cancer is expected to revolutionize our way to fight against this disease, by redirecting the immune system in order to eliminate relapse issues. Initially described at the onset of the 90's, chimeric antigen receptors(CARs) are recombinant receptors transferred in various T cell subsets, providing specific antigens binding in a non-major histocompatibility complex restricted manner, and effective on a large variety of human leukocyte antigen-divers cell populations. Once transferred, engineered T cells act like an expanding "living drug" specifically targeting the tumor-associated antigen, and ensure long-term antitumor memory. Over the last decades, substantial improvements have been made in CARs design. CAR T cells have finally reached the clinical practice and first clinical trials have shown promising results. In acute lymphoblastic leukemia, high rate of complete and prolonged clinical responses have been observed after anti-CD19 CAR T cell therapy, with specific but manageable adverse events. In this review, our goal was to describe CAR structures and functions, and to summarize recent data regarding pre-clinical studies and clinical trials in acute leukemia.
基金supported by grants from the National Key Research and Development Program of China(Grant No.2020YFA0707704)the National Key Research and Development Program of China(Grant No.2016YFC1303800)+1 种基金the Jilin Scientific and Technological Development Program(CN)(Grant No.20190303146SF)the National Natural Science Foundation of China(Grant No.81874052).
文摘Cytokine release syndrome(CRS)is a major obstacle to the widespread clinical application of chimeric antigen receptor(CAR)T cell therapies.CRS can also be induced by infections(such as SARS-CoV-2),drugs(such as therapeutic antibodies),and some autoimmune diseases.Myeloid-derived macrophages play key roles in the pathogenesis of CRS,and participate in the production and release of the core CRS cytokines,including interleukin(IL)-1,IL-6,and interferon-γ.In this review,we summarize the roles of macrophages in CRS and discuss new developments in macrophage activation and the related mechanisms of cytokine regulation in CRS.
基金grants from National Natural Science Foundation of China(81773268)Collaborative Innovation Center for Cancer Personalized Medicine,China(JX21817902/005).
文摘c-Met is a hepatocyte growth factor receptor overexpressed in many tumors such as hepatocellular carcinoma(HCC).Therefore,c-Met may serve as a promising target for HCC immunotherapy.Modifying T cells to express c-Met-specific chimeric antigen receptor(CAR)is an attractive strategy in treating c-Met-positive HCC.This study aimed to systematically evaluate the inhibitory effects of 2^(nd)-and 3^(rd)-generation c-Met CAR-T cells on hepatocellular carcinoma(HCC)cells.Here,2^(nd)-and 3^(rd)-generation c-Met CARs containing an anti-c-Met singlechain variable fragment(scFv)as well as the CD28 signaling domain and CD3ζ(c-Met-28-3ζ),the CD137 signaling domain and CD3ζ(c-Met-137-3ζ),or the CD28 and CD137 signaling domains and CD3ζ(c-Met-28-137-3ζ)were constructed,and their abilities to target c-Met-positive HCC cells were evaluated in vitro and in vivo.All c-Met CARs were stably expressed on T cell membrane,and c-Met CAR-T cells aggregated around c-Met-positive HCC cells and specifically killed them in vitro.c-Met-28-137-3ζCAR-T cells secreted more interferon-gamma(IFN-γ)and interleukin 2(IL-2)than c-Met-28-3ζCAR-T cells and c-Met-137-3ζCAR-T cells.Compared with c-Met low-expressed cells,c-Met CAR-T cells secreted more cytokines when co-cultured with c-Met high-expressed cells.Moreover,c-Met-28-137-3ζCAR-T cells eradicated HCC more effectively in xenograft tumor models compared with the control groups.This study suggests that 3^(rd)-generation c-Met CAR-T cells are more effective in inhibiting c-Met-positive HCC cells than 2^(nd)-generation c-Met CAR-T cells,thereby providing a promising therapeutic intervention for c-Met-positive HCC.
基金The National Natural Science Foundation of China,No.81972673.
文摘With the advance of genome engineering technology,chimeric antigen receptors(CARs)-based immunotherapy has become an emerging therapeutic strategy for tumors.Although initially designed for T cells in tumor immunotherapy,CARs have been exploited to modify the function of natural killer(NK)cells against a variety of tumors,including hepatocellular carcinoma(HCC).CAR-NK cells have the potential to sufficiently kill tumor antigen-expressing HCC cells,independent of major histocompatibility complex matching or prior priming.In this review,we summarize the recent advances in genetic engineering of CAR-NK cells against HCC and discuss the current challenges and prospects of CAR-NK cells as a revolutionary cellular immunotherapy against HCC.
基金Natural Science Foundation of China(No.82270149)China Postdoctoral Science Foundation(Nos.2022T150592,and 2021M692930)Young Postdoctoral Innovators in Henan Province(WL),and Henan Province Medical Science and Technology Research Project(Nos.SBGJ202102063,and LHGJ20220305)
文摘The advent of chimeric antigen receptor(CAR)-T cell immunotherapies has led to breakthroughs in the treatment of hematological malignancies.However,their success in treating solid tumors has been limited.CAR-natural killer(NK)cells have several advantages over CAR-T cells because NK cells can be made from pre-existing cell lines or allogeneic NK cells with a mismatched major histocompatibility complex(MHC),which means they are more likely to become an"off-the-shelf"product.Moreover,they can kill cancer cells via CAR-dependent/independent pathways and have limited toxicity.Macrophages are the most malleable immune cells in the body.These cells can efficiently infiltrate into tumors and are present in large numbers in tumor microenvironments(TMEs).Importantly,CAR-macrophages(CAR-Ms)have recently yielded exciting preclinical results in several solid tumors.Nevertheless,CAR-T,CAR-NK,and CAR-M all have their own advantages and limitations.In this review,we systematically discuss the current status,progress,and the major hurdles of CAR-T cells,CAR-NK cells,and CAR-M as they relate to five aspects:CAR structure,therapeutic mechanisms,the latest research progress,current challenges and solutions,and comparison according to the existing research in order to provide a reasonable option for treating solid tumors in the future.
基金supported by the European Union’s Horizon 2020 Research and Innovation Program(RESHAPE,825392)to Joanna Hester and Fadi Issasupported by the Restore Research Trust。
文摘Chimeric antigen receptors(CARs)are a breakthrough in genetic engineering that have revolutio nized the field of adoptive cellular therapy(ACT).Cells expressing these receptors are rerouted to a predefined target by the inclusion of an antigen-specific binding region within the synthetic CAR construct.The advantage of cells with programmed specificity has been demonstrated clinically in the field of oncology,and it is clear that such cells have greater accuracy,potency,and reduced off-target therapeutic effects compared with their unmodified counterparts.In contrast to conventional T cells(Tconvs),regulatory T cells(Tregs)play a major role in suppressing immune activation and regulating the host immune response.CAR expression within Tregs has been proposed as a therapy for autoimmune and inflammatory diseases,graft-versus-host disease(GVHD),and organ transplant rejectio n.In the latter,they hold immense potential as mediators of immune tolerance for recipients of allotransplants.However,current research into CAR-Treg engineering is extremely limited,and there is uncertainty regarding optimal design for therapeutic use.This review examines the rationale behind the development of CAR-Tregs,their significance for human transplantation,potential designs,safety considerations,and comparisons of CAR-Tregs in transplantation models to date.
文摘BACKGROUND Chimeric antigen receptor T-Cell(CAR-T)therapy is an effective new treatment for hematologic malignancies.Cytokine release syndrome(CRS)and neurologic toxicity are main toxicities.CRS-induced rhabdomyolysis(RM)followed by CART therapy treatment has not been previously reported.CASE SUMMARY We report a case of a 22-year-old woman with relapsed acute lymphoblastic leukemia obtained sequential cluster of differentiation(CD)19 and CD22 CAR-T infusion.This patient experienced grade 3 CRS with RM,mild hypotension requiring intravenous fluids,and mild hypoxia and was managed effectively with the IL-6 receptor antagonist tocilizumab.This patient had no signs of immune effector cell-associated neurologic syndrome.Restaging scans 30 d postCAR-T therapy demonstrated a complete remission,and the symptoms of muscle weakness improved through rehabilitation.CONCLUSION Myalgia is an easily overlooked symptom of severe CRS after CAR-T therapy.It is necessary to monitor myoglobin levels when a patient presents with symptoms of myalgia or acute renal insufficiency.
文摘BACKGROUND Diffuse large B-cell lymphoma(DLBCL)is curable with first-line chemoimmunotherapy but patients with relapsed/refractory(R/R)DLBCL still face a poor prognosis.For patients with R/R DLBCL,the complete response rate to traditional next-line therapy is only 7%and the median overall survival is 6.3 mo.Recently,CD19-targeting chimeric antigen receptor T cells(CAR-T)have shown promise in clinical trials.However,approximately 50%of patients treated with CAR-T cells ultimately progress and few salvage therapies are effective.CASE SUMMARY Here,we report on 7 patients with R/R DLBCL whose disease progressed after CAR-T infusion.They received a PD-1 inhibitor(sintilimab)and a histone deacetylase inhibitor(chidamide).Five of the 7 patients tolerated the treatment without any serious adverse events.Two patients discontinued the treatment due to lung infection and rash.At the 20-mo follow-up,the median overall survival of these 7 patients was 6 mo.Of note,there were 2 complete response rates(CRs)and 2 partial response rates(PRs)during this novel therapy,with an overall response rate(ORR)of 57.1%,and one patient had a durable CR that lasted at least 20 mo.CONCLUSION In conclusion,chidamide combined with sintilimab may be a choice for DLBCL patients progressing after CD19-targeting CAR-T therapy.
文摘BACKGROUND Diffuse large B-cell lymphoma(DLBCL)is a common aggressive non-Hodgkin's lymphoma(NHL),accounting for 30%-40%of adult NHL.Primary testicular(PT)lymphoma is an uncommon extranodal disease representing approximately 1%-2%of lymphoma.Approximately 30%–40%of patients are refractory to frontline therapy or relapse after complete remission.Refractory DLBCL responds poorly to other lines of chemotherapy,and experiences short-term survival.CASE SUMMARY We present a 41-year-old male patient who was diagnosed with PT-DLBCL.Further disease progression was observed after multiline chemotherapy.Chimeric antigen receptor T cells(CAR-T)therapy salvaged the patient.Unfortunately,a new mass was observed in the right adrenal area after six months.The patient was administered programmed cell death protein-1(PD-1)inhibitor therapy and maintained progression-free survival at more than 17 mo of follow-up.CONCLUSION Our findings support the potential benefit of CAR-T combined with PD-1 inhibitor therapies in this type of relapsed and refractory PT-DLBCL.
文摘BACKGROUND Chimeric antigen receptor T cell(CART)therapy has benefited many refractory lymphoma patients,but some patients experience poor effects.Previous studies have shown that programmed cell death protein-1(PD-1)inhibitors can improve and prolong the therapeutic effect of CAR-T cell treatment.CASE SUMMARY A 61-year-old male presented with 15-d history of diarrhea and lower-limb edema.A large mass was detected in the pelvis,and pathology indicated non-Hodgkin diffuse large B-cell lymphoma.After three cycles of the R-CHOP chemotherapeutic regimen,the patient showed three subcutaneous nodules under the left armpit and both sides of the cervical spine.Pathological examination of the nodules indicated DLBCL again.The patient was diagnosed with relapsed and refractory diffuse large B-cell lymphoma.We recommended CAR-T cell treatment.Before treatment,the patient’s T cell function and expression of immune detection points were tested.Expression of PD-1 was obviously increased(52.7%)on cluster of differentiation(CD)3+T cells.The PD-1 inhibitor(3 mg/kg)was infused prior to lymphodepleting chemotherapy with fludarabine and cyclophosphamide.CAR-CD19 T cells of 3×10^(6)/kg and CAR-CD22 T cells 1×10^(6)/kg were infused,respectively.The therapeutic effect was significant,and the deoxyribonucleic acid copy numbers of CAR-CD19 T cells and CAR-CD22 T cells were stable.Presently,the patient has been disease-free for more than 12 mo.CONCLUSION This case suggests that the combination of PD-1 inhibitors and CAR-T cellsimproved therapeutic efficacy in B-cell lymphoma.
基金supported by grants from Tianjin Municipal Science and Technology Commission Grant(No.20JCZDJC00120)the Chinese Academy of Medical Sciences(CAMS)Innovation Fund for Medical Science(No.2020-I2M-C&T-A-019)
文摘Cellular therapies have revolutionized the treatment of hematological malignancies since their conception and rapid development.Chimeric antigen receptor(CAR)-T cell therapy is the most widely applied cellular therapy.Since the Food and Drug Administration approved two CD19-CAR-T products for clinical treatment of relapsed/refractory acute lymphoblastic leukemia and diffuse large B cell lymphoma in 2017,five more CAR-T cell products were subsequently approved for treating multiple myeloma or B cell malignancies.Moreover,clinical trials of CAR-T cell therapy for treating other hematological malignancies are ongoing.Both China and the United States have contributed significantly to the development of clinical trials.However,CAR-T cell therapy has many limitations such as a high relapse rate,adverse side effects,and restricted availability.Various methods are being implemented in clinical trials to address these issues,some of which have demonstrated promising breakthroughs.This review summarizes developments in CAR-T cell trials and advances in CAR-T cell therapy.
基金supported by the Key Program of the National Natural Science Foundation of China(Nos.81830008 and 81630006)the National Natural Science Foundation of China(No.81570197)and the Natural Science Foundation of Hubei Province(No.2018ACA140).
文摘Adoptive therapeutic immune cells, such as chimeric antigen receptor (CAR)-T cells and natural killer cells, have established a new generation of precision medicine based on which dramatic breakthroughs have been achieved in intractable lymphoma treatments. Currently, well-explored approaches focus on autologous cells due to their low immunogenicity, but they are highly restricted by the high costs, time consumption of processing, and the insufficiency of primary cells in some patients. Induced pluripotent stem cells (iPSCs) are cell sources that can theoretically produce indefinite well-differentiated immune cells. Based on the above facts, it may be reasonable to combine the iPSC technology and the CAR design to produce a series of highly controllable and economical "live" drugs. Manufacturing hypoimmunogenic iPSCs by inactivation or over-expression at the genetic level and then arming the derived cells with CAR have emerged as a form of "off-the-shelf" strategy to eliminate tumor cells efficiently and safely in a broader range of patients. This review describes the reasonability, feasibility, superiority, and drawbacks of such approaches, summarizes the current practices and relevant research progress, and provides insights into the possible new paths for personalized cell-based therapies.
基金the National Natural Science Foundation of China(Nos.81830007,82130004,81600155,and 81670716)Clinical Research Plan of SHDC(No.2020CR1032B),Shanghai Rising-Star Program(No.19QA145600)+5 种基金Municipal Human Resources Development Program for Outstanding Young Talents in Medical and Health Sciences in Shanghai(No.2017YQ075)Talent(Class A)of Guangci Excellence Youth Plan(No.GCQN-2019-A16)Clinical Research Plan of Shanghai Hospital Development Center(No.SHDC2020CR1032B)Shanghai Municipal Education Commission Gaofeng Clinical Medicine Grant Support(Nos.20152206 and 20152208)China CAR-T Clinical Research Fund Project(No.CARTFR-05)Samuel Waxman Cancer Research Foundation.
文摘Anti-CD19 chimeric antigen receptor(CAR)-T cell therapy has achieved 40%–50%long-term complete response in relapsed or refractory diffuse large B-cell lymphoma(DLBCL)patients.However,the underlying mechanism of alterations in the tumor microenvironments resulting in CAR-T cell therapy failure needs further investigation.A multi-center phase I/II trial of anti-CD19 CD28z CAR-T(FKC876,ChiCTR1800019661)was conducted.Among 22 evaluable DLBCL patients,seven achieved complete remission,10 experienced partial remissions,while four had stable disease by day 29.Single-cell RNA sequencing results were obtained from core needle biopsy tumor samples collected from long-term complete remission and early-progressed patients,and compared at different stages of treatment.M2-subtype macrophages were significantly involved in both in vivo and in vitro anti-tumor functions of CAR-T cells,leading to CAR-T cell therapy failure and disease progression in DLBCL.Immunosuppressive tumor microenvironments persisted before CAR-T cell therapy,during both cell expansion and disease progression,which could not be altered by infiltrating CAR-T cells.Aberrant metabolism profile of M2-subtype macrophages and those of dysfunctional T cells also contributed to the immunosuppressive tumor microenvironments.Thus,our findings provided a clinical rationale for targeting tumor microenvironments and reprogramming immune cell metabolism as effective therapeutic strategies to prevent lymphoma relapse in future designs of CAR-T cell therapy.
基金supported by grants from the National Key R&D Program of China(Nos.2021YFC2301900 and 2021YFC2301905)the National Natural Science Foundation of China(Nos.NSFC,81974303 and 82072271)+3 种基金Beijing Natural Science Foundation(Nos.L222068 and Z220018)the High-Level Public Health Specialized Talents Project of Beijing Municipal Health Commission(Nos.2022-2-018 and 2022-1-007)the Climbing the peak(Dengfeng)Talent Training Program of Beijing Hospitals Authority(Nos.DFL20191701)the Beijing Health Technologies Promotion Program(BHTPP202002)and Beijing Key Laboratory for HIV/AIDS Research(No.BZ0089).
文摘Although antiretroviral therapy(ART)can reduce the viral load in the plasma to undetectable levels in human immunodeficiency virus(HIV)-infected individuals,ART alone cannot completely eliminate HIV due to its integration into the host cell genome to form viral reservoirs.To achieve a functional cure for HIV infection,numerous preclinical and clinical studies are underway to develop innovative immunotherapies to eliminate HIV reservoirs in the absence of ART.Early studies have tested adoptive T-cell therapies in HIV-infected individuals,but their effectiveness was limited.In recent years,with the technological progress and great success of chimeric antigen receptor(CAR)therapy in the treatment of hematological malignancies,CAR therapy has gradually shown its advantages in the field of HIV infection.Many studies have identified a variety of HIV-specific CAR structures and types of cytolytic effector cells.Therefore,CAR therapy may be beneficial for enhancing HIV immunity,achieving HIV control,and eliminating HIV reservoirs,gradually becoming a promising strategy for achieving a functional HIV cure.In this review,we provide an overview of the design of anti-HIV CAR proteins,the cell types of anti-HIV CAR(including CAR T cells,CAR natural killer cells,and CAR-encoding hematopoietic stem/progenitor cells),the clinical application of CAR therapy in HIV infection,and the prospects and challenges in anti-HIV CAR therapy for maintaining viral suppression and eliminating HIV reservoirs.
基金supported by the Science and Technology Planning Project of Beijing City (Z151100003915076)the National Natural Science Foundation of China (31270820, 81230061, 81472612, 81402566)+1 种基金the National Basic Science and Development Programme of China (2013BAI01B04)the Nursery Innovation Fund (15KMM50)
文摘The successes achieved by chimeric antigen receptor-modified T (CAR-T) cells in hematological malignancies raised the pos- sibility of their use in non-small lung cancer (NSCLC). In this phase I clinical study (NCT01869166), patients with epidermal growth factor receptor (EGFR)-positive (〉50% expression), relapsed/refractory NSCLC received escalating doses of EGFR-targeted CAR-T cell infusions. The EGFR-targeted CAR-T cells were generated from peripheral blood after a 10 to 13-day in vitro expansion. Serum cytokines in peripheral blood and copy numbers of CAR-EGFR transgene in peripheral blood and in tissue biopsy were monitored periodically. Clinical responses were evaluated with RECISTI.1 and im- mune-related response criteria, and adverse events were graded with CTCAE 4.0. The EGFR-targeted CAR-T cell infusions were well-tolerated without severe toxicity. Of 11 evaluable patients, two patients obtained partial response and five had stable disease for two to eight months. The median dose of transfused CAR+ T cells was 0.97x 10^7 cells kg J (interquar- tile range (IQR), 0.45 to 1.09x 10^7 cells kg 1). Pathological eradication of EGFR positive tumor cells after EGFR-targeted CAR-T cell treatment can be observed in tumor biopsies, along with the CAR-EGFR gene detected in tumor-infiltrating T cells in all four biopsied patients. The EGFR-targeted CAR-T cell therapy is safe and feasible for EGFR-positive advanced re- lapsed/refractory NSCLC.
文摘Chimeric antigen receptor (CAR) is a recombinant immunoreceptor combining an antibody-derived target- ing fragment with signaling domains capable of acti- vating cells, which endows T cells with the ability to recognize tumor-associated surface antigens indepen- dent of the expression of major histocompatibiiity complex (MHC) molecules. Recent early-phase clinical trials of CAR-modified T (CAR-T) cells for relapsed or refractory B cell malignancies have demonstrated promising results (that is, anti-CD19 CAR-T in B cell acute lymphoblastic leukemia (B-ALL)). Given this suc- cess, broadening the clinical experience of CAR-T cell therapy beyond hematological malignancies has been actively investigated. Here we discuss the basic design of CAR and review the clinical results from the studies of CAR-T cells in B cell leukemia and lymphoma, and several solid tumors. We additionally discuss the major challenges in the further development and strategies for increasing anti-tumor activity and safety, as well as for successful commercial translation.
文摘Chimeric antigen receptor (CAR) T cell therapy is a promising cancer treatment that has recently been undergoing rapid development. However, there are still some major challenges, including precise tumor targeting to avoid off-target or "on-target/off-tumor" toxicity, adequate T cell infiltration and migration to solid tumors and T cell proliferation and persistence across the physical and biochemical barriers of solid tumors. In this review, we focus on the primary challenges and strafegies to design safe and effective CAR T cells, including using novel cutting-edge technologies for CAR and vecfor designs to increase both the safety and efficacy, further T cell modification to overcome the tumorassociated immune suppression, and using gene editing technologies to generate universal CAR T cells. All these efforts promote the development and evolution of CAR T cell therapy and move toward our ultimate goal--curing cancer with high safety, high efficacy, and low cost.