Ventilation is one of the factors contributing to energy consumption in buildings and food preservation. The solar chimney proves to be an alternative for reducing conventional energy consumption. Thus, in this study,...Ventilation is one of the factors contributing to energy consumption in buildings and food preservation. The solar chimney proves to be an alternative for reducing conventional energy consumption. Thus, in this study, the performance of a solar chimney with two active faces for thermally drawing air from a chamber for preserving agri-food products was evaluated. These performances were experimentally assessed through data measurements: temperatures and velocities within the chimney, and their analysis using Excel and MATLAB. The obtained results were compared with those from literature to verify their validity. From this study, it is found that the maximum temperature at the chimney outlet reaches 49.4˚C with an average value of 43.7˚C. Additionally, the heating evolution of the chimney air presents four (04) identical phases in pairs, reflecting the chimney’s operation throughout day. The temperature difference between the outlet and inlet of the chimney reaches a maximum of 17˚C with an average of 12.6˚C. Regarding airflow, the maximum air velocity at the chimney outlet is 0.8 m/s, and the average velocities have consistently been greater than or equal to 0.46 m/s. Thus, it can be concluded that the solar chimney is capable of providing ventilation for the preservation chamber through thermal draft.展开更多
Three-dimensional numerical simulations for a solar chimney power plant(SCPP)and wind supercharged solar chimney power plant(WSSCPP)based on the Spanish prototype using the solar ray-tracing algorithm were performed t...Three-dimensional numerical simulations for a solar chimney power plant(SCPP)and wind supercharged solar chimney power plant(WSSCPP)based on the Spanish prototype using the solar ray-tracing algorithm were performed to study the shadow effect of the chimney.The area of the shadow region increases with an increase in the incident angle of the solar rays.A parametric study was performed by varying the incident angle from 0°to 30°.The temperature and velocity distributions at different incident angles were analyzed.In addition,we investigated the chimney shadow effect in several comprehensive SCPP systems.The findings show that the turbine shaft powers of the SCPP and WSSCPP were reduced by 22.4%and 13.7%,respectively,when the incident angle increased from 0°to 30°.In conclusion,it is important to consider the chimney shadow effect when estimating the performance in the design and cost analysis of SCPP systems.展开更多
The mathematic model of heat transfer through ventilated double glazing was verified with the measured data,which were from a test chamber equipped with glass face temperature,solar radiation,ambient temperature,and w...The mathematic model of heat transfer through ventilated double glazing was verified with the measured data,which were from a test chamber equipped with glass face temperature,solar radiation,ambient temperature,and wind speed measurement facility.After the model validation,the double-skin facade assessment was carried out through simulation with ESP-r software integrating thermal simulation and air low net work module.The air flow situation in the air gap was analyzed on the basis of the hourly air velocity simulation data within typical winter week,summer week,spring week and autumn week.The differences of chimney effect in different seasons were discussed,and the thermal loads resulted from the ventilated and unventilated double skin facade were presented.展开更多
We utilize high-resolution resonant angle-resolved photoemission spectroscopy(ARPES)to study the band structure and hybridization effect of the heavy-fermion compound Ce2 IrIn8.We observe a nearly flat band at the bin...We utilize high-resolution resonant angle-resolved photoemission spectroscopy(ARPES)to study the band structure and hybridization effect of the heavy-fermion compound Ce2 IrIn8.We observe a nearly flat band at the binding energy of 7 meV below the coherent temperature Tcoh^40 K,which characterizes the electrical resistance maximum and indicates the onset temperature of hybridization.However,the Fermi vector and the Fermi surface volume have little change around Tcoh,which challenges the widely believed evolution from a hightemperature small Fermi surface to a low-temperature large Fermi surface.Our experimental results of the band structure fit well with the density functional theory plus dynamic mean-field theory calculations.展开更多
Controlling the magnetic anisotropy ofmagnetic material is extremely important forany technological applications.FeSiBamorphous alloy has been chosen for investi-gation.Although the alloy might be a goodsoft magnetic ...Controlling the magnetic anisotropy ofmagnetic material is extremely important forany technological applications.FeSiBamorphous alloy has been chosen for investi-gation.Although the alloy might be a goodsoft magnetic material,it might not be ideal ifthe quenching processing is carried out directly展开更多
在6种不同浓度的铈(C e3+)对0.1 m g.L-1的Cu2+毒害下,研究了菹草叶片中保护酶SOD、POD、CAT的活性,活性氧H2O2,膜脂过氧化产物M DA含量及叶绿素含量等的变化及影响.结果表明,在9~12 d之内,7.5 m g.L-1以下的C e3+可以增强SOD、CAT、PO...在6种不同浓度的铈(C e3+)对0.1 m g.L-1的Cu2+毒害下,研究了菹草叶片中保护酶SOD、POD、CAT的活性,活性氧H2O2,膜脂过氧化产物M DA含量及叶绿素含量等的变化及影响.结果表明,在9~12 d之内,7.5 m g.L-1以下的C e3+可以增强SOD、CAT、POD活性,降低M DA的含量,提高叶片中叶绿素和可溶性蛋白含量,从而减轻Cu2+对菹草植物体的伤害.而随着C e3+作用时间的延长和浓度的增大,C e3+的缓解作用不断减弱,C e3+和Cu2+产生协同效应,加重毒害.本实验结果认为,5~7.5 m g.L-1的C e3+缓解菹草叶片Cu2+毒害效果最好.展开更多
文摘Ventilation is one of the factors contributing to energy consumption in buildings and food preservation. The solar chimney proves to be an alternative for reducing conventional energy consumption. Thus, in this study, the performance of a solar chimney with two active faces for thermally drawing air from a chamber for preserving agri-food products was evaluated. These performances were experimentally assessed through data measurements: temperatures and velocities within the chimney, and their analysis using Excel and MATLAB. The obtained results were compared with those from literature to verify their validity. From this study, it is found that the maximum temperature at the chimney outlet reaches 49.4˚C with an average value of 43.7˚C. Additionally, the heating evolution of the chimney air presents four (04) identical phases in pairs, reflecting the chimney’s operation throughout day. The temperature difference between the outlet and inlet of the chimney reaches a maximum of 17˚C with an average of 12.6˚C. Regarding airflow, the maximum air velocity at the chimney outlet is 0.8 m/s, and the average velocities have consistently been greater than or equal to 0.46 m/s. Thus, it can be concluded that the solar chimney is capable of providing ventilation for the preservation chamber through thermal draft.
基金the National Natural Science Foundation of China(No.51976053)College Students Innovation and Entrepreneurship Training Program(No.202010294024).
文摘Three-dimensional numerical simulations for a solar chimney power plant(SCPP)and wind supercharged solar chimney power plant(WSSCPP)based on the Spanish prototype using the solar ray-tracing algorithm were performed to study the shadow effect of the chimney.The area of the shadow region increases with an increase in the incident angle of the solar rays.A parametric study was performed by varying the incident angle from 0°to 30°.The temperature and velocity distributions at different incident angles were analyzed.In addition,we investigated the chimney shadow effect in several comprehensive SCPP systems.The findings show that the turbine shaft powers of the SCPP and WSSCPP were reduced by 22.4%and 13.7%,respectively,when the incident angle increased from 0°to 30°.In conclusion,it is important to consider the chimney shadow effect when estimating the performance in the design and cost analysis of SCPP systems.
基金Supported by Shanghai Science and Technology Supporting Program(08DZ1203500)City University of Hong Kong(7002004)+1 种基金Shanghai Local University Fund(071605124)Undergraduates Education Fund for University of Shanghai
文摘The mathematic model of heat transfer through ventilated double glazing was verified with the measured data,which were from a test chamber equipped with glass face temperature,solar radiation,ambient temperature,and wind speed measurement facility.After the model validation,the double-skin facade assessment was carried out through simulation with ESP-r software integrating thermal simulation and air low net work module.The air flow situation in the air gap was analyzed on the basis of the hourly air velocity simulation data within typical winter week,summer week,spring week and autumn week.The differences of chimney effect in different seasons were discussed,and the thermal loads resulted from the ventilated and unventilated double skin facade were presented.
基金Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0401000,2015CB921300,2016YFA0300303,2016YFA0401002 and 2017YFA0303103the National Natural Science Foundation of China under Grant Nos 11674371,11774401 and 11874330+4 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences under Grant No XDB07000000the Beijing Municipal Science and Technology Commission under Grant No Z171100002017018the Hundred-Talent Program(type C)of the Chinese Academy of Sciencesthe Sino-Swiss Science and Technology Cooperation under Grant No IZLCZ2-170075the Swiss National Science Foundation under Grant No 200021-159678
文摘We utilize high-resolution resonant angle-resolved photoemission spectroscopy(ARPES)to study the band structure and hybridization effect of the heavy-fermion compound Ce2 IrIn8.We observe a nearly flat band at the binding energy of 7 meV below the coherent temperature Tcoh^40 K,which characterizes the electrical resistance maximum and indicates the onset temperature of hybridization.However,the Fermi vector and the Fermi surface volume have little change around Tcoh,which challenges the widely believed evolution from a hightemperature small Fermi surface to a low-temperature large Fermi surface.Our experimental results of the band structure fit well with the density functional theory plus dynamic mean-field theory calculations.
文摘Controlling the magnetic anisotropy ofmagnetic material is extremely important forany technological applications.FeSiBamorphous alloy has been chosen for investi-gation.Although the alloy might be a goodsoft magnetic material,it might not be ideal ifthe quenching processing is carried out directly