An advanced direct chip attaching packaged two-dimensional ceramic thermal wind sensor is studied. The thermal wind sensor chip is fabricated by metal lift-off processes on the ceramic substrate. An advanced direct ch...An advanced direct chip attaching packaged two-dimensional ceramic thermal wind sensor is studied. The thermal wind sensor chip is fabricated by metal lift-off processes on the ceramic substrate. An advanced direct chip attaching (DCA) packaging is adopted and this new packaged method simplifies the processes of packaging further. Simulations of the advanced DCA packaged sensor based on computational fluid dynamics (CFD) model show the sensor can detect wind speed and direction effectively. The wind tunnel testing results show the advanced DCA packaged sensor can detect the wind direction from 0° to 360° and wind speed from 0 to 20 m/s with the error less than 0.5 m/s. The nonlinear fitting based least square method in Matlab is used to analyze the performance of the sensor.展开更多
The combination of chromatin immunoprecipitation with sequencing (ChIP-Seq) is an effective method for obtaining an in vivo genome-wide profile of the interaction of a protein with DNA. With the dramatic development o...The combination of chromatin immunoprecipitation with sequencing (ChIP-Seq) is an effective method for obtaining an in vivo genome-wide profile of the interaction of a protein with DNA. With the dramatic development of high-throughput short sequencing technologies, several new algorithms have been developed to process ChIP-Seq. However, the reported analytical tools for ChIP-Seq based on size selection of immunoprecipitated (IPed) DNA fragments are mainly adopted on the Solexa system. As a sequencer with the highest throughput, few studies of ChIP-Seq based on SOLiD system have been reported. The main difference of the SOLiD and Solexa systems exists in the length of DNA fragments during preparing sequencing libraries. The SOLiD system has relatively short DNA fragments if it processes a further sonication of IPed DNA fragments in order to meet the length requirement of DNA fragments for emulsion-PCR (ePCR). This work aims to investigate the influences of DNA fragment length on data analysis from ChIP-Seq. Previous studies show that typical bimodal peaks can be observed in Solexa ChIP-Seq data, but based on the analysis of the real SOLiD ChIP-Seq data in this study, we found that there were no double peaks with apparent reads shift in a local enriched region and the local reads distribution of peaks were tested by normal distribution. Using real and simulated ChIP-Seq data, three main ChIP-Seq algorithms (CisGenome, SISSRs and MACS) have been investigated. We found that algorithms developed for processing ChIP-Seq data generated from Solexa library protocol, cannot efficiently capture the feature of the ChIP-Seq data from SOLiD library. Misuse of those analytical tools would be a possible reason for failure of ChIP-Seq on the SOLiD system. Therefore, a new ChIP-Seq analytical strategy for an extra-sonication of IPed DNA fragments needs to be developed.展开更多
基金supported by the National Natural Science Foundation of China(No.61076071)
文摘An advanced direct chip attaching packaged two-dimensional ceramic thermal wind sensor is studied. The thermal wind sensor chip is fabricated by metal lift-off processes on the ceramic substrate. An advanced direct chip attaching (DCA) packaging is adopted and this new packaged method simplifies the processes of packaging further. Simulations of the advanced DCA packaged sensor based on computational fluid dynamics (CFD) model show the sensor can detect wind speed and direction effectively. The wind tunnel testing results show the advanced DCA packaged sensor can detect the wind direction from 0° to 360° and wind speed from 0 to 20 m/s with the error less than 0.5 m/s. The nonlinear fitting based least square method in Matlab is used to analyze the performance of the sensor.
基金supported by the National Natural Science Foundation of China (30871393)National Hing-Tech Research & Development Project of China (2006AA020702)
文摘The combination of chromatin immunoprecipitation with sequencing (ChIP-Seq) is an effective method for obtaining an in vivo genome-wide profile of the interaction of a protein with DNA. With the dramatic development of high-throughput short sequencing technologies, several new algorithms have been developed to process ChIP-Seq. However, the reported analytical tools for ChIP-Seq based on size selection of immunoprecipitated (IPed) DNA fragments are mainly adopted on the Solexa system. As a sequencer with the highest throughput, few studies of ChIP-Seq based on SOLiD system have been reported. The main difference of the SOLiD and Solexa systems exists in the length of DNA fragments during preparing sequencing libraries. The SOLiD system has relatively short DNA fragments if it processes a further sonication of IPed DNA fragments in order to meet the length requirement of DNA fragments for emulsion-PCR (ePCR). This work aims to investigate the influences of DNA fragment length on data analysis from ChIP-Seq. Previous studies show that typical bimodal peaks can be observed in Solexa ChIP-Seq data, but based on the analysis of the real SOLiD ChIP-Seq data in this study, we found that there were no double peaks with apparent reads shift in a local enriched region and the local reads distribution of peaks were tested by normal distribution. Using real and simulated ChIP-Seq data, three main ChIP-Seq algorithms (CisGenome, SISSRs and MACS) have been investigated. We found that algorithms developed for processing ChIP-Seq data generated from Solexa library protocol, cannot efficiently capture the feature of the ChIP-Seq data from SOLiD library. Misuse of those analytical tools would be a possible reason for failure of ChIP-Seq on the SOLiD system. Therefore, a new ChIP-Seq analytical strategy for an extra-sonication of IPed DNA fragments needs to be developed.