We demonstrate the direct loading of cold atoms into a microchip 2-mm Z-trap, where the evaporative cooling can be performed efficiently, from a macroscopic quadrupole magnetic trap with a high loading efficiency. The...We demonstrate the direct loading of cold atoms into a microchip 2-mm Z-trap, where the evaporative cooling can be performed efficiently, from a macroscopic quadrupole magnetic trap with a high loading efficiency. The macroscopic quadrupole magnetic trap potential is designed to be moveable by controlling the currents of the two pairs of anti-Helrnholtz coils. The cold atoms are initially prepared in a standard six-beam magneto-optical trap and loaded into the macroscopic quadrupole magnetic trap, and then transported to the atom chip surface by moving the macroscopic trap potential. By means of a three-dimensional absorption imaging system, we are able to optimize the position alignment of the atom cloud in the macroscopic trap and the microchip Z-shaped wire. Consequently, with a proper magnetic transfer scheme, we load the cold atoms into the microchip Z-trap directly and efficiently. The loading efficiency is measured to be about 50%. This approach can be used to generate appropriate ultracold atoms sources, for example, for a magnetically guided atom interferometer based on atom chip.展开更多
There has existed a great deal of theory researches in term of chip production and chip breaking characteristics under conventional cutting and high speed cutting conditions,however,there isn't sufficient research on...There has existed a great deal of theory researches in term of chip production and chip breaking characteristics under conventional cutting and high speed cutting conditions,however,there isn't sufficient research on chip formation mechanism as well as its influence on cutting state regarding large workpieces under extreme load cutting.This paper presents a model of large saw-tooth chip through applying finite element simulation method,which gives a profound analysis about the characteristics of the extreme load cutting as well as morphology and removal of the large chip.In the meantime,a calculation formula that gives a quantitative description of the saw-tooth level regarding the large chip is established on the basis of cutting experiments on high temperature and high strength steel2.25Cr-lMo-0.25V.The cutting experiments are carried out by using the scanning electron microscope and super depth of field electron microscope to measure and calculate the large chip produced under different cutting parameters,which can verify the validity of the established model.The calculating results show that the large saw-toothed chip is produced under the squeezing action between workpiece and cutting tools.In the meanwhile,the chip develops a hardened layer where contacts the cutting tool and the saw-tooth of the chip tend to form in transverse direction.This research creates the theoretical model for large chip and performs the cutting experiments under the extreme load cutting condition,as well as analyzes the production mechanism of the large chip in the macro and micro conditions.Therefore,the proposed research could provide theoretical guidance and technical support in improving productivity and cutting technology research.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11604348)
文摘We demonstrate the direct loading of cold atoms into a microchip 2-mm Z-trap, where the evaporative cooling can be performed efficiently, from a macroscopic quadrupole magnetic trap with a high loading efficiency. The macroscopic quadrupole magnetic trap potential is designed to be moveable by controlling the currents of the two pairs of anti-Helrnholtz coils. The cold atoms are initially prepared in a standard six-beam magneto-optical trap and loaded into the macroscopic quadrupole magnetic trap, and then transported to the atom chip surface by moving the macroscopic trap potential. By means of a three-dimensional absorption imaging system, we are able to optimize the position alignment of the atom cloud in the macroscopic trap and the microchip Z-shaped wire. Consequently, with a proper magnetic transfer scheme, we load the cold atoms into the microchip Z-trap directly and efficiently. The loading efficiency is measured to be about 50%. This approach can be used to generate appropriate ultracold atoms sources, for example, for a magnetically guided atom interferometer based on atom chip.
基金Supported by National Natural Science Foundation of China(Grant No.51175131)
文摘There has existed a great deal of theory researches in term of chip production and chip breaking characteristics under conventional cutting and high speed cutting conditions,however,there isn't sufficient research on chip formation mechanism as well as its influence on cutting state regarding large workpieces under extreme load cutting.This paper presents a model of large saw-tooth chip through applying finite element simulation method,which gives a profound analysis about the characteristics of the extreme load cutting as well as morphology and removal of the large chip.In the meantime,a calculation formula that gives a quantitative description of the saw-tooth level regarding the large chip is established on the basis of cutting experiments on high temperature and high strength steel2.25Cr-lMo-0.25V.The cutting experiments are carried out by using the scanning electron microscope and super depth of field electron microscope to measure and calculate the large chip produced under different cutting parameters,which can verify the validity of the established model.The calculating results show that the large saw-toothed chip is produced under the squeezing action between workpiece and cutting tools.In the meanwhile,the chip develops a hardened layer where contacts the cutting tool and the saw-tooth of the chip tend to form in transverse direction.This research creates the theoretical model for large chip and performs the cutting experiments under the extreme load cutting condition,as well as analyzes the production mechanism of the large chip in the macro and micro conditions.Therefore,the proposed research could provide theoretical guidance and technical support in improving productivity and cutting technology research.