期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Ultra-stable silica-coated chiral Au-nanorod assemblies: Core-shell nanostructures with enhanced chiroptical properties 被引量:3
1
作者 Bing Han Lin Shi +4 位作者 Xiaoqing Gao Jun Guo Ke Hou Yonglong Zheng Zhiyong Tang 《Nano Research》 SCIE EI CAS CSCD 2016年第2期451-457,共7页
Chiral nano-assemblies with amplified optical activity have attracted particular interest for their potential application in photonics, sensing and catalysis. Yet it still remains a great challenge to realize their re... Chiral nano-assemblies with amplified optical activity have attracted particular interest for their potential application in photonics, sensing and catalysis. Yet it still remains a great challenge to realize their real applications because of the instability of these assembled nanostructures. Herein, we demonstrate a facile and efficient method to fabricate ultra-stable chiral nanostructures with strong chiroptical properties. In these novel chiral nanostructures, side-by-side assembly of chiral cysteine-modified gold nanorods serves as the core while mesoporous silica acts as the shell. The chiral core-shell nanostructures exhibit an evident plasmonic circular dichroism (CD) response originating from the chiral core. Impressively, such plasmonic CD signals can be easily manipulated by changing the number as well as the aspect ratio of Au nanorods in the assemblies located at the core. In addition, because of the stabilization effect of silica shells, the chiroptical performance of these core-shell nanostructures is significantly improved in different chemical environments. 展开更多
关键词 chiral core-shell nanostructure plasmonic circular dichroism gold nanorods self-assembly high stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部