Rapid detection of target foodborne pathogens plays more and more significant roles in food safety,which requires the efficiency,sensitivity,and accuracy.In this research,we proposed a new st rategy of isothermal-mole...Rapid detection of target foodborne pathogens plays more and more significant roles in food safety,which requires the efficiency,sensitivity,and accuracy.In this research,we proposed a new st rategy of isothermal-molecular-amplification integrated with lateral-flow-strip for rapid detection of Salmonella without traditional enrichment-culture.Th e designed syringe-assisted-filtration can contribute to simultaneous collection and concentration of target bacterium from vegetable samples in just 3 min,resolving the drawbacks of traditional random sampling protocols.After simple and convenient ultrasonication,samples can be directly amplified at 39℃ in 25 min and the amplicons are qualitatively and quantitatively analyzed with the designed lateral-flow-strip in 5 min.Finally,satisfied results have been achieved within 40 min,which greatly improve the efficiency while the accuracy is also guaranteed.Furthermore,all detection steps can be completed under instrument-free conditions.This method will hold great promise for target pathogen detection in the resource-limited district,or for emergency on-site identification.展开更多
Bisphenol A (BPA) was one of the environmental hormones that would cause endocrine and metabolic disorders in human or wildlife. This paper proposed a method to detect the trace amounts of BPA in water samples by fu...Bisphenol A (BPA) was one of the environmental hormones that would cause endocrine and metabolic disorders in human or wildlife. This paper proposed a method to detect the trace amounts of BPA in water samples by fully utilizing the enrichment and resonance amplification functions of a new dual-functional membrane. In this work, gold nanoparticles (AuNPs) modified by 3-amino-5-mercapto-1,2,4-triazole (AMT) were embedded in nylon66 membrane to produce a dual-functional membrane which could carry out sample enrichment by capturing BPA molecules from water and achieve resonance amplification by connecting BPA to the surfaces of AuNPs. By designing an automatic sampler for large-volume enrichment, the SERS enhancement factor (EF) of the method was further improved to 1.2 × 105. The present method had been successfully applied to detect BPA in drinking water and environmental water by SERS with the detection limit of 0.012 μg/L. It had the potential for on-site detecting of BPA in various water samples.展开更多
Comprehensive Summary Understanding the kinetic process during the self-assembly and chiral amplification of metal-organic polyhedra(MOPs)is critical for the rational preparation of chiral MOPs.Herein,we report the io...Comprehensive Summary Understanding the kinetic process during the self-assembly and chiral amplification of metal-organic polyhedra(MOPs)is critical for the rational preparation of chiral MOPs.Herein,we report the ionic radius dependent kinetic processes for the self-assembly and chiral amplification of Ln4L4-type(Ln,Lanthanides;L,ligand)lanthanide tetrahedral cages.The chiral Eu4(LR)4 tetrahedral cage is structurally characterized by nuclear magnetic resonance(NMR),electrospray ionization time-of-flight mass spectrometry(ESI-TOF-MS),and single crystal X-ray diffraction.Kinetic study on the stereo-controlled self-assembly of circularly polarized luminescence(CPL)-active Ln4(LR)4(Ln=LaIII,PrIII and EuIII)tetrahedra manifests that the larger ionic radius of Ln leads to faster assembly rates.Mixed-ligand cage assembly experiments with chiral LR/S,achiral Lac and Ln(1:3:4 molar ratio)reveal that the self-assembly and chiral amplification occur synchronously for the LaIII and PrIII cages,while two distinct steps,i.e.,first self-assembly and then chiral amplification,are observed for the EuIII cage.Such distinct kinetic behavior is attributed to different ligands exchange rates among the mixed-ligand Ln4L4 cages.This work provides fundamental guidance for fabrication and property-optimization of chiral lanthanide-based molecular materials.展开更多
Liquid biopsy is a highly promising method for non-invasive detection of tumor-associated nucleic acid fragments in body fluids but is challenged by the low abundance of nucleic acids of clinical interest and their se...Liquid biopsy is a highly promising method for non-invasive detection of tumor-associated nucleic acid fragments in body fluids but is challenged by the low abundance of nucleic acids of clinical interest and their sequence homology with the vast background of nucleic acids from healthy cells.Recently,programmable endonucleases such as clustered regularly interspaced short palindromic repeats(CRISPR)associated protein(Cas)and prokaryotic Argonautes have been successfully used to remove background nucleic acids and enrich mutant allele fractions,enabling their detection with deep next generation sequencing(NGS).However,the enrichment level achievable with these assays is limited by futile binding events and off-target cleavage.To overcome these shortcomings,we conceived a new assay(Programmable Enzyme-Assisted Selective Exponential Amplification,PASEA)that combines the cleavage of wild type alleles with concurrent polymerase amplification.While PASEA increases the numbers of both wild type and mutant alleles,the numbers of mutant alleles increase at much greater rates,allowing PASEA to achieve an unprecedented level of selective enrichment of targeted alleles.By combining CRISPR-Cas9 based cleavage with recombinase polymerase amplification,we converted samples with0.01%somatic mutant allele fractions(MAFs)to products with 70%MAFs in a single step within 20 min,enabling inexpensive,rapid genotyping with such as Sanger sequencers.Furthermore,PASEA's extraordinary efficiency facilitates sensitive real-time detection of somatic mutant alleles at the point of care with custom designed Exo-RPA probes.Real-time PASEA'performance was proved equivalent to clinical amplification refractory mutation system(ARMS)-PCR and NGS when testing over hundred cancer patients'samples.This strategy has the potential to reduce the cost and time of cancer screening and genotyping,and to enable targeted therapies in resource-limited settings.展开更多
基金financially supported by the grants of the NSFC(32172295,21804028)the key R&D program of Anhui(201904d07020016)+5 种基金the Anhui Provincial NSF(1908085QC121)the Fundamental Research Fund for central university(JZ2019HGTB0068)the China Postdoctoral Science Foundation(2019M652167)the Fund of State Key Lab of Chemo/Biosensing and Chemometrics(Hunan University),the postdoc grant of Anhui(2020B412)Young and Middle-aged Leading Scientists,Engineers and Innovators of the XPCC(2019CB017)China Agriculture Research System-48(CARS-48).
文摘Rapid detection of target foodborne pathogens plays more and more significant roles in food safety,which requires the efficiency,sensitivity,and accuracy.In this research,we proposed a new st rategy of isothermal-molecular-amplification integrated with lateral-flow-strip for rapid detection of Salmonella without traditional enrichment-culture.Th e designed syringe-assisted-filtration can contribute to simultaneous collection and concentration of target bacterium from vegetable samples in just 3 min,resolving the drawbacks of traditional random sampling protocols.After simple and convenient ultrasonication,samples can be directly amplified at 39℃ in 25 min and the amplicons are qualitatively and quantitatively analyzed with the designed lateral-flow-strip in 5 min.Finally,satisfied results have been achieved within 40 min,which greatly improve the efficiency while the accuracy is also guaranteed.Furthermore,all detection steps can be completed under instrument-free conditions.This method will hold great promise for target pathogen detection in the resource-limited district,or for emergency on-site identification.
基金supported by the National Natural Science Foundation of China(Nos. 21575168, 21475153,21575167 and 21675178)the Guangdong Provincial Natural Science Foundation of China(No. 2015A030311020)+1 种基金the Special Funds for Public Welfare Research and Capacity Building in Guangdong Province of China(No. 2015A030401036)the Guangzhou Science andTechnology Program of China(Nos.201604020165, 201704020040)
文摘Bisphenol A (BPA) was one of the environmental hormones that would cause endocrine and metabolic disorders in human or wildlife. This paper proposed a method to detect the trace amounts of BPA in water samples by fully utilizing the enrichment and resonance amplification functions of a new dual-functional membrane. In this work, gold nanoparticles (AuNPs) modified by 3-amino-5-mercapto-1,2,4-triazole (AMT) were embedded in nylon66 membrane to produce a dual-functional membrane which could carry out sample enrichment by capturing BPA molecules from water and achieve resonance amplification by connecting BPA to the surfaces of AuNPs. By designing an automatic sampler for large-volume enrichment, the SERS enhancement factor (EF) of the method was further improved to 1.2 × 105. The present method had been successfully applied to detect BPA in drinking water and environmental water by SERS with the detection limit of 0.012 μg/L. It had the potential for on-site detecting of BPA in various water samples.
基金funded by the National Natural Science Foundation of China(Grants 21825107,22171264,21971237 and 22201285)Science Foundation of Fujian Province(Grants 2021J02016 and 2022J01507).
文摘Comprehensive Summary Understanding the kinetic process during the self-assembly and chiral amplification of metal-organic polyhedra(MOPs)is critical for the rational preparation of chiral MOPs.Herein,we report the ionic radius dependent kinetic processes for the self-assembly and chiral amplification of Ln4L4-type(Ln,Lanthanides;L,ligand)lanthanide tetrahedral cages.The chiral Eu4(LR)4 tetrahedral cage is structurally characterized by nuclear magnetic resonance(NMR),electrospray ionization time-of-flight mass spectrometry(ESI-TOF-MS),and single crystal X-ray diffraction.Kinetic study on the stereo-controlled self-assembly of circularly polarized luminescence(CPL)-active Ln4(LR)4(Ln=LaIII,PrIII and EuIII)tetrahedra manifests that the larger ionic radius of Ln leads to faster assembly rates.Mixed-ligand cage assembly experiments with chiral LR/S,achiral Lac and Ln(1:3:4 molar ratio)reveal that the self-assembly and chiral amplification occur synchronously for the LaIII and PrIII cages,while two distinct steps,i.e.,first self-assembly and then chiral amplification,are observed for the EuIII cage.Such distinct kinetic behavior is attributed to different ligands exchange rates among the mixed-ligand Ln4L4 cages.This work provides fundamental guidance for fabrication and property-optimization of chiral lanthanide-based molecular materials.
基金supported by China Scholarship CouncilNIH grant to the University of Pennsylvania(No.K011K01TW011190-01A1)+1 种基金NIH grant to the University of Pennsylvania(No.R21CA228614-01A1)Beijing Hope Run Special Fund from the Cancer Foundation of China(Nos.LC2019L04 and LC2020A36)。
文摘Liquid biopsy is a highly promising method for non-invasive detection of tumor-associated nucleic acid fragments in body fluids but is challenged by the low abundance of nucleic acids of clinical interest and their sequence homology with the vast background of nucleic acids from healthy cells.Recently,programmable endonucleases such as clustered regularly interspaced short palindromic repeats(CRISPR)associated protein(Cas)and prokaryotic Argonautes have been successfully used to remove background nucleic acids and enrich mutant allele fractions,enabling their detection with deep next generation sequencing(NGS).However,the enrichment level achievable with these assays is limited by futile binding events and off-target cleavage.To overcome these shortcomings,we conceived a new assay(Programmable Enzyme-Assisted Selective Exponential Amplification,PASEA)that combines the cleavage of wild type alleles with concurrent polymerase amplification.While PASEA increases the numbers of both wild type and mutant alleles,the numbers of mutant alleles increase at much greater rates,allowing PASEA to achieve an unprecedented level of selective enrichment of targeted alleles.By combining CRISPR-Cas9 based cleavage with recombinase polymerase amplification,we converted samples with0.01%somatic mutant allele fractions(MAFs)to products with 70%MAFs in a single step within 20 min,enabling inexpensive,rapid genotyping with such as Sanger sequencers.Furthermore,PASEA's extraordinary efficiency facilitates sensitive real-time detection of somatic mutant alleles at the point of care with custom designed Exo-RPA probes.Real-time PASEA'performance was proved equivalent to clinical amplification refractory mutation system(ARMS)-PCR and NGS when testing over hundred cancer patients'samples.This strategy has the potential to reduce the cost and time of cancer screening and genotyping,and to enable targeted therapies in resource-limited settings.
基金supported by the National Natural Science Foundation of China(21171063)the Excellent Young Scientists Fund(21222103)+2 种基金the National Basic Research Program of China(2011CB808703)State Key Laboratory of Catalytic Materials and Reaction Engineering(RIPP,SINOPEC)the Program for Changjiang Scholars and Innovative Research Team in University(IRT101713018)~~