We study the influence of the chiral phase transition on the chiral magnetic effect. The azimuthal charge-particle correlations as functions of the temperature are calculated. It is found that there is a pronounced cu...We study the influence of the chiral phase transition on the chiral magnetic effect. The azimuthal charge-particle correlations as functions of the temperature are calculated. It is found that there is a pronounced cusp in the correlations as the temperature reaches its critical value for the QCD phase transition. It is predicted that there will be a drastic suppression of the charge-particle correlations as the collision energy in RHIC decreases to below a critical value. We show then the azimuthal charge-particle correlations can be the signal to identify the occurrence of the QCD phase transitions in RHIC energy scan experiments.展开更多
The chiral magnetic effect (CME) refers to a charge separation along a strong magnetic field due to an imbalanced chirality of quarks from interactions with the vacuum topological gluon field. This chiral anomaly is a...The chiral magnetic effect (CME) refers to a charge separation along a strong magnetic field due to an imbalanced chirality of quarks from interactions with the vacuum topological gluon field. This chiral anomaly is a fundamental property of quantum chromodynamics (QCD) and, therefore, an observation of the CME would have far-reaching impact on our understanding of QCD and Nature. The measurements of the CME-sensitive azimuthal correlator Δγ observable in heavy-ion collisions are contaminated by a major background induced by elliptic flow anisotropy. Several novel approaches have been carried out, including a dedicated isobar collision program, to address this flow-induced background. Further background effects, arising from nonflow correlations, have been studied. While the isobar data are consistent with zero CME signal with an upper limit of 10% of the measured Δγ, the Au+Au midcentral data suggest a positive CME signal on the order of 10% of the measured Δγ with a significance of ~2 standard deviations. Future increased statistics and improved detector capability should yield a firm conclusion on the existence (or the lack) of the CME in relativistic heavy-ion collisions.展开更多
The magnetic field plays a major role in searching for the chiral magnetic effect in relativistic heavy-ion collisions. If the lifetime of the magnetic field is too short, as predicted by simulations of the field in v...The magnetic field plays a major role in searching for the chiral magnetic effect in relativistic heavy-ion collisions. If the lifetime of the magnetic field is too short, as predicted by simulations of the field in vacuum, the chiral magnetic effect will be largely suppressed. However, the lifetime of the magnetic field will become longer when the QGP medium response is considered. We give an estimate of the effect, especially considering the magnetic field response of the QGP medium, and compare it with the experimental results for the background-subtracted correlator H at RHIC and LHC energies. The results show that our method explains the experimental results better at the top RHIC energy than at the LHC energy.展开更多
Considering the magnetic field response of the QGP medium,we perform a systematical study of the chiral magnetic effect(CME),and make a comparison with the experimental results for the background-subtracted correlat...Considering the magnetic field response of the QGP medium,we perform a systematical study of the chiral magnetic effect(CME),and make a comparison with the experimental results for the background-subtracted correlator H at the energies of the RHIC Beam Energy Scan(BES) and the LHC energy.The CME signals from our computations show a centrality trend and beam energy dependence that are qualitatively consistent with the experimental measurements of the charge dependent correlations.The time evolution of the chiral electromagnetic current at the RHIC and LHC energies is systematically studied.The dependence of the time-integrated current signal on the beam energy s1/2with different centralities is investigated.Our phenomenological analysis shows that the time-integrated electromagnetic current is maximal near the collision energy s1/2≈39 GeV.The qualitative trend of the induced electromagnetic current is in agreement with the CME experimental results at the RHIC and LHC energies.展开更多
The chiral magnetic effect(CME)is a novel transport phenomenon,arising from the interplay between quantum anomalies and strong magnetic fields in chiral systems.In high-energy nuclear collisions,the CME may survive th...The chiral magnetic effect(CME)is a novel transport phenomenon,arising from the interplay between quantum anomalies and strong magnetic fields in chiral systems.In high-energy nuclear collisions,the CME may survive the expansion of the quark-gluon plasma fireball and be detected in experiments.Over the past two decades,experimental searches for the CME have attracted extensive interest at the Relativistic Heavy Ion Collider(RHIC)and the Large Hadron Collider(LHC).The main goal of this study is to investigate three pertinent experimental approaches:the$\gamma$correlator,the R correlator,and the signed balance functions.We exploit simple Monte Carlo simulations and a realistic event generator(EBE-AVFD)to verify the equivalence of the core components among these methods and to ascertain their sensitivities to the CME signal and the background contributions for the isobar collisions at the RHIC.展开更多
In this review, we examine the current theoretical and experimental status of the chiral magnetic effect.We discuss possible future strategies for resolving uncertainties in interpretation including recommendations fo...In this review, we examine the current theoretical and experimental status of the chiral magnetic effect.We discuss possible future strategies for resolving uncertainties in interpretation including recommendations for theoretical work, recommendations for measurements based on data collected in the past five years, and recommendations for beam use in the coming years of RHIC. We specifically investigate the case for colliding nuclear isobars(nuclei with the same mass but different charge) and find the case compelling. We recommend that a program of nuclear isobar collisions to isolate the chiral magnetic effect from background sources be placed as a high priority item in the strategy for completing the RHIC mission.展开更多
We propose a novel method to search for the chiral magnetic effect(cme) in heavy ion collisions.We argue that the relative strength of the magnetic field(mainly from spectator protons and responsible for the cme)w...We propose a novel method to search for the chiral magnetic effect(cme) in heavy ion collisions.We argue that the relative strength of the magnetic field(mainly from spectator protons and responsible for the cme)with respect to the reaction plane and the participant plane is opposite to that of the elliptic flow background arising from the fluctuating participant geometry.This opposite behavior in a single collision system,hence with small systematic uncertainties,can be exploited to extract the possible cme signal from the flow background.The method is applied to existing data from rhic,and the outcome discussed.展开更多
We studied the chiral magnetic effect in AuAu,RuRu,and ZrZr collisions at sNN−√=200GeV.The axial charge evolution was modeled with stochastic hydrodynamics,and geometrical quantities were calculated with the Monte Ca...We studied the chiral magnetic effect in AuAu,RuRu,and ZrZr collisions at sNN−√=200GeV.The axial charge evolution was modeled with stochastic hydrodynamics,and geometrical quantities were calculated with the Monte Carlo Glauber model.By adjusting the relaxation time of the magnetic field,we found our results are in good agreement with background subtracted data for AuAu collisions at the same energy.We also made predictions for RuRu and ZrZr collisions.We found a weak centrality dependence on initial chiral imbalance,which implies that the centrality dependence of chiral magnetic effect signals results mainly from the effects of the magnetic field and volume factor.Furthermore,our results show an unexpected dependence on system size.While the AuAu system has larger chiral imbalance and magnetic field,it was observed to have a smaller signal for the chiral magnetic effect due to the larger volume suppression factor.展开更多
The Chiral Magnetic Effect(CME) is a macroscopic manifestation of fundamental chiral anomaly in a many-body system of chiral fermions, and emerges as an anomalous transport current in the fluid dynamics framework. E...The Chiral Magnetic Effect(CME) is a macroscopic manifestation of fundamental chiral anomaly in a many-body system of chiral fermions, and emerges as an anomalous transport current in the fluid dynamics framework. Experimental observation of the CME is of great interest and has been reported in Dirac and Weyl semimetals. Significant efforts have also been made to look for the CME in heavy ion collisions. Critically needed for such a search is the theoretical prediction for the CME signal. In this paper we report a first quantitative modeling framework, Anomalous Viscous Fluid Dynamics(AVFD), which computes the evolution of fermion currents on top of realistic bulk evolution in heavy ion collisions and simultaneously accounts for both anomalous and normal viscous transport effects. AVFD allows a quantitative understanding of the generation and evolution of CME-induced charge separation during the hydrodynamic stage, as well as its dependence on theoretical ingredients. With reasonable estimates of key parameters, the AVFD simulations provide the first phenomenologically successful explanation of the measured signal in 200 AGe V Au Au collisions.展开更多
We give a brief overview of recent theoretical and experimental results on the chiral magnetic effect and spin polarization effect in heavy-ion collisions.We present updated experimental results for the chiral magneti...We give a brief overview of recent theoretical and experimental results on the chiral magnetic effect and spin polarization effect in heavy-ion collisions.We present updated experimental results for the chiral magnetic effect and related phenomena.The time evolution of the magnetic fields in different models is discussed.The newly developed quantum kinetic theory for massive fermions is reviewed.We present theoretical and experimental results for the polarization of K hyperons and the q00 value of vector mesons.展开更多
Relativistic heavy-ion collisions create hot quark–gluon plasma as well as very strong electromagnetic(EM)and fluid vortical fields.The strong EM field and vorticity can induce intriguing macroscopic quantum phenomen...Relativistic heavy-ion collisions create hot quark–gluon plasma as well as very strong electromagnetic(EM)and fluid vortical fields.The strong EM field and vorticity can induce intriguing macroscopic quantum phenomena such as chiral magnetic,chiral separation,chiral electric separation,and chiral vortical effects as well as the spin polarization of hadrons.These phenomena provide us with experimentally feasible means to study the nontrivial topological sector of quantum chromodynamics,the possible parity violation of strong interaction at high temperature,and the subatomic spintronics of quark–gluon plasma.These studies,both in theory and in experiments,are strongly connected with other subfields of physics such as condensed matter physics,astrophysics,and cold atomic physics,and thus form an emerging interdisciplinary research area.We give an introduction to the aforementioned phenomena induced by the EM field and vorticity and an overview of the current status of experimental research in heavy-ion collisions.We also briefly discuss spin hydrodynamics as well as chiral and spin kinetic theories.展开更多
In 2018,the STAR collaboration collected data from^(96)_(44)Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr at√^(S)NN=200 Ge V to search for the presence of the chiral magnetic effect in collisions of nuclei.The isobar ...In 2018,the STAR collaboration collected data from^(96)_(44)Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr at√^(S)NN=200 Ge V to search for the presence of the chiral magnetic effect in collisions of nuclei.The isobar collision species alternated frequently between 9644 Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr.In order to conduct blind analyses of studies related to the chiral magnetic effect in these isobar data,STAR developed a three-step blind analysis procedure.Analysts are initially provided a"reference sample"of data,comprised of a mix of events from the two species,the order of which respects time-dependent changes in run conditions.After tuning analysis codes and performing time-dependent quality assurance on the reference sample,analysts are provided a species-blind sample suitable for calculating efficiencies and corrections for individual≈30-min data-taking runs.For this sample,species-specific information is disguised,but individual output files contain data from a single isobar species.Only run-by-run corrections and code alteration subsequent to these corrections are allowed at this stage.Following these modifications,the"frozen"code is passed over the fully un-blind data,completing the blind analysis.As a check of the feasibility of the blind analysis procedure,analysts completed a"mock data challenge,"analyzing data from Au+Au collisions at√^(S)NN=27 Ge V,collected in 2018.The Au+Au data were prepared in the same manner intended for the isobar blind data.The details of the blind analysis procedure and results from the mock data challenge are presented.展开更多
Recent experiments show that Δy,an observable designed to detect the chiral magnetic effect(CME),in small collision systems(p+A) is similar to that in heavy ion collisions(A+A).This introduces a challenge to the exis...Recent experiments show that Δy,an observable designed to detect the chiral magnetic effect(CME),in small collision systems(p+A) is similar to that in heavy ion collisions(A+A).This introduces a challenge to the existence of the CME because it is believed that no azimuthal correlation exists between the orientation of the magnetic field(Φ_(B)) and participant plane(Φ_(2)) in small collision systems.In this work,we introduce three charge density models to describe the inner charge distributions of protons and neutrons and calculate the electric and magnetic fields produced in small p+A collisions at both RHIC and LHC energies.Our results show that the contribution of the single projectile proton is the main contributor to the magnetic field after averaging over all participants.The azimuthal correlation between Φ_(B) and Φ_(2) is small but not vanished.Additionally,owing to the large fluctuation in field strength,the magnetic-field contribution to Δγ may be large.展开更多
Recent measurements of charge-dependent azimuthal correlations in high-energy heavy-ion collisions have indicated charge-separation signals perpendicular to the reaction plane, and have been related to the chiral magn...Recent measurements of charge-dependent azimuthal correlations in high-energy heavy-ion collisions have indicated charge-separation signals perpendicular to the reaction plane, and have been related to the chiral magnetic effect(CME). However, the correlation signal is contaminated with the background caused by the collective motion(flow) of the collision system, and an effective approach is needed to remove the flow background from the correlation. We present a method study with simplified Monte Carlo simulations and a multi-phase transport model,and develop a scheme to reveal the true CME signal via event-shape engineering with the flow vector of the particles of interest.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos.10425521,10675007,10935001the Major State Basic Research Development Program under Grant No.G2007CB815000the Financial Support from China Postdoctoral Science Foundation No.20090460534
文摘We study the influence of the chiral phase transition on the chiral magnetic effect. The azimuthal charge-particle correlations as functions of the temperature are calculated. It is found that there is a pronounced cusp in the correlations as the temperature reaches its critical value for the QCD phase transition. It is predicted that there will be a drastic suppression of the charge-particle correlations as the collision energy in RHIC decreases to below a critical value. We show then the azimuthal charge-particle correlations can be the signal to identify the occurrence of the QCD phase transitions in RHIC energy scan experiments.
文摘The chiral magnetic effect (CME) refers to a charge separation along a strong magnetic field due to an imbalanced chirality of quarks from interactions with the vacuum topological gluon field. This chiral anomaly is a fundamental property of quantum chromodynamics (QCD) and, therefore, an observation of the CME would have far-reaching impact on our understanding of QCD and Nature. The measurements of the CME-sensitive azimuthal correlator Δγ observable in heavy-ion collisions are contaminated by a major background induced by elliptic flow anisotropy. Several novel approaches have been carried out, including a dedicated isobar collision program, to address this flow-induced background. Further background effects, arising from nonflow correlations, have been studied. While the isobar data are consistent with zero CME signal with an upper limit of 10% of the measured Δγ, the Au+Au midcentral data suggest a positive CME signal on the order of 10% of the measured Δγ with a significance of ~2 standard deviations. Future increased statistics and improved detector capability should yield a firm conclusion on the existence (or the lack) of the CME in relativistic heavy-ion collisions.
基金Supported by National Natural Science Foundation of China(11747115,11475068)the CCNU-QLPL Innovation Fund(QLPL2016P01)the Excellent Youth Foundation of Hubei Scientific Committee(2006ABB036)
文摘The magnetic field plays a major role in searching for the chiral magnetic effect in relativistic heavy-ion collisions. If the lifetime of the magnetic field is too short, as predicted by simulations of the field in vacuum, the chiral magnetic effect will be largely suppressed. However, the lifetime of the magnetic field will become longer when the QGP medium response is considered. We give an estimate of the effect, especially considering the magnetic field response of the QGP medium, and compare it with the experimental results for the background-subtracted correlator H at RHIC and LHC energies. The results show that our method explains the experimental results better at the top RHIC energy than at the LHC energy.
基金Supported by National Natural Science Foundation of China(11875178,11475068,11747115)the CCNU-QLPL Innovation Fund(QLPL2016P01) the Excellent Youth Foundation of Hubei Scientific Committee(2006ABB036)
文摘Considering the magnetic field response of the QGP medium,we perform a systematical study of the chiral magnetic effect(CME),and make a comparison with the experimental results for the background-subtracted correlator H at the energies of the RHIC Beam Energy Scan(BES) and the LHC energy.The CME signals from our computations show a centrality trend and beam energy dependence that are qualitatively consistent with the experimental measurements of the charge dependent correlations.The time evolution of the chiral electromagnetic current at the RHIC and LHC energies is systematically studied.The dependence of the time-integrated current signal on the beam energy s1/2with different centralities is investigated.Our phenomenological analysis shows that the time-integrated electromagnetic current is maximal near the collision energy s1/2≈39 GeV.The qualitative trend of the induced electromagnetic current is in agreement with the CME experimental results at the RHIC and LHC energies.
基金Supported by the US Department of Energy(DE-AC02-98CH10886,DE-FG02-89ER40531,DE-FG02-92ER40713,DE-FG02-88ER40424,DE-SC0012910,DE-SC0013391,DE-SC0020651)the National Natural Science Foundation of China(12025501,11905059,12075085)+6 种基金the Strategic Priority Research Program of Chinese Academy of Science with(XDB34030200)the Fundamental Research Funds for the Central Universities(CCNU19ZN019)the Ministry of Science and Technology(MoST)(2016YFE0104800)the China Scholarship Council(CSC),Join Large-Scale Scientific Facility Funds of NSFC and CAS(U2032110)the U.S.Department of Energy,Office of Science,Office of Nuclear Physics,within the framework of the Beam Energy Scan Theory(BEST)Topical Collaborationthe U.S.National Science Foundation(PHY-1913729)the Natural Sciences and Engineering Research Council of Canada,the Fonds de recherche du Québec-Nature et technologies(FRQNT)through the Programmede Bourses d'ExcellencepourÉtudiantsÉtrangers(PBEEE)。
文摘The chiral magnetic effect(CME)is a novel transport phenomenon,arising from the interplay between quantum anomalies and strong magnetic fields in chiral systems.In high-energy nuclear collisions,the CME may survive the expansion of the quark-gluon plasma fireball and be detected in experiments.Over the past two decades,experimental searches for the CME have attracted extensive interest at the Relativistic Heavy Ion Collider(RHIC)and the Large Hadron Collider(LHC).The main goal of this study is to investigate three pertinent experimental approaches:the$\gamma$correlator,the R correlator,and the signed balance functions.We exploit simple Monte Carlo simulations and a realistic event generator(EBE-AVFD)to verify the equivalence of the core components among these methods and to ascertain their sensitivities to the CME signal and the background contributions for the isobar collisions at the RHIC.
文摘In this review, we examine the current theoretical and experimental status of the chiral magnetic effect.We discuss possible future strategies for resolving uncertainties in interpretation including recommendations for theoretical work, recommendations for measurements based on data collected in the past five years, and recommendations for beam use in the coming years of RHIC. We specifically investigate the case for colliding nuclear isobars(nuclei with the same mass but different charge) and find the case compelling. We recommend that a program of nuclear isobar collisions to isolate the chiral magnetic effect from background sources be placed as a high priority item in the strategy for completing the RHIC mission.
基金Supported by National Natural Science Foundation of China(11647306,11747312,U1732138,11505056,11605054,11628508)US Department of Energy(DE-SC0012910)
文摘We propose a novel method to search for the chiral magnetic effect(cme) in heavy ion collisions.We argue that the relative strength of the magnetic field(mainly from spectator protons and responsible for the cme)with respect to the reaction plane and the participant plane is opposite to that of the elliptic flow background arising from the fluctuating participant geometry.This opposite behavior in a single collision system,hence with small systematic uncertainties,can be exploited to extract the possible cme signal from the flow background.The method is applied to existing data from rhic,and the outcome discussed.
基金Supported by International Program for Ph.D Candidates,Sun Yat-Sen University,the National Science Foundation(PHY-1913729)the National Natural Science Foundation of China(11675274,11735007)the Shang-hai Pujiang Program(19PJ1401400)。
文摘We studied the chiral magnetic effect in AuAu,RuRu,and ZrZr collisions at sNN−√=200GeV.The axial charge evolution was modeled with stochastic hydrodynamics,and geometrical quantities were calculated with the Monte Carlo Glauber model.By adjusting the relaxation time of the magnetic field,we found our results are in good agreement with background subtracted data for AuAu collisions at the same energy.We also made predictions for RuRu and ZrZr collisions.We found a weak centrality dependence on initial chiral imbalance,which implies that the centrality dependence of chiral magnetic effect signals results mainly from the effects of the magnetic field and volume factor.Furthermore,our results show an unexpected dependence on system size.While the AuAu system has larger chiral imbalance and magnetic field,it was observed to have a smaller signal for the chiral magnetic effect due to the larger volume suppression factor.
基金supported by the U.S.Department of Energy,Office of Science,Office of Nuclear Physics,within the framework of the Beam Energy Scan Theory(BEST)Topical Collaborationsupported in part by the National Science Foundation under Grant No.PHY-1352368(SS and JL)+4 种基金by the National Science Foundation of China under Grant No.11735007(JL)by the U.S.Department of Energy under grant Contract Number No.DE-SC0012704(BNL)/DE-SC0011090(MIT)(YY)the Institute for Nuclear Theory for hospitality during the INT-16-3 Programperformed on IU’s Big Red Ⅱ cluster,supported in part by Lilly Endowment,Inc.(through its support for the Indiana University Pervasive Technology Institute)in part by the Indiana METACyt Initiative
文摘The Chiral Magnetic Effect(CME) is a macroscopic manifestation of fundamental chiral anomaly in a many-body system of chiral fermions, and emerges as an anomalous transport current in the fluid dynamics framework. Experimental observation of the CME is of great interest and has been reported in Dirac and Weyl semimetals. Significant efforts have also been made to look for the CME in heavy ion collisions. Critically needed for such a search is the theoretical prediction for the CME signal. In this paper we report a first quantitative modeling framework, Anomalous Viscous Fluid Dynamics(AVFD), which computes the evolution of fermion currents on top of realistic bulk evolution in heavy ion collisions and simultaneously accounts for both anomalous and normal viscous transport effects. AVFD allows a quantitative understanding of the generation and evolution of CME-induced charge separation during the hydrodynamic stage, as well as its dependence on theoretical ingredients. With reasonable estimates of key parameters, the AVFD simulations provide the first phenomenologically successful explanation of the measured signal in 200 AGe V Au Au collisions.
基金supported in part by the National Natural Science Foundation of China(Nos.11890713,11890714,11835002,11961131011,11421505,11535012 and 11890713)the Strategic Priority Research Program of the Chinese Academy of Sciences(Nos.XDB34030202 and XDB34030102)。
文摘We give a brief overview of recent theoretical and experimental results on the chiral magnetic effect and spin polarization effect in heavy-ion collisions.We present updated experimental results for the chiral magnetic effect and related phenomena.The time evolution of the magnetic fields in different models is discussed.The newly developed quantum kinetic theory for massive fermions is reviewed.We present theoretical and experimental results for the polarization of K hyperons and the q00 value of vector mesons.
基金supported by National Natural Science Foundation of China(Nos.11535012 and 11675041)。
文摘Relativistic heavy-ion collisions create hot quark–gluon plasma as well as very strong electromagnetic(EM)and fluid vortical fields.The strong EM field and vorticity can induce intriguing macroscopic quantum phenomena such as chiral magnetic,chiral separation,chiral electric separation,and chiral vortical effects as well as the spin polarization of hadrons.These phenomena provide us with experimentally feasible means to study the nontrivial topological sector of quantum chromodynamics,the possible parity violation of strong interaction at high temperature,and the subatomic spintronics of quark–gluon plasma.These studies,both in theory and in experiments,are strongly connected with other subfields of physics such as condensed matter physics,astrophysics,and cold atomic physics,and thus form an emerging interdisciplinary research area.We give an introduction to the aforementioned phenomena induced by the EM field and vorticity and an overview of the current status of experimental research in heavy-ion collisions.We also briefly discuss spin hydrodynamics as well as chiral and spin kinetic theories.
文摘In 2018,the STAR collaboration collected data from^(96)_(44)Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr at√^(S)NN=200 Ge V to search for the presence of the chiral magnetic effect in collisions of nuclei.The isobar collision species alternated frequently between 9644 Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr.In order to conduct blind analyses of studies related to the chiral magnetic effect in these isobar data,STAR developed a three-step blind analysis procedure.Analysts are initially provided a"reference sample"of data,comprised of a mix of events from the two species,the order of which respects time-dependent changes in run conditions.After tuning analysis codes and performing time-dependent quality assurance on the reference sample,analysts are provided a species-blind sample suitable for calculating efficiencies and corrections for individual≈30-min data-taking runs.For this sample,species-specific information is disguised,but individual output files contain data from a single isobar species.Only run-by-run corrections and code alteration subsequent to these corrections are allowed at this stage.Following these modifications,the"frozen"code is passed over the fully un-blind data,completing the blind analysis.As a check of the feasibility of the blind analysis procedure,analysts completed a"mock data challenge,"analyzing data from Au+Au collisions at√^(S)NN=27 Ge V,collected in 2018.The Au+Au data were prepared in the same manner intended for the isobar blind data.The details of the blind analysis procedure and results from the mock data challenge are presented.
文摘Recent experiments show that Δy,an observable designed to detect the chiral magnetic effect(CME),in small collision systems(p+A) is similar to that in heavy ion collisions(A+A).This introduces a challenge to the existence of the CME because it is believed that no azimuthal correlation exists between the orientation of the magnetic field(Φ_(B)) and participant plane(Φ_(2)) in small collision systems.In this work,we introduce three charge density models to describe the inner charge distributions of protons and neutrons and calculate the electric and magnetic fields produced in small p+A collisions at both RHIC and LHC energies.Our results show that the contribution of the single projectile proton is the main contributor to the magnetic field after averaging over all participants.The azimuthal correlation between Φ_(B) and Φ_(2) is small but not vanished.Additionally,owing to the large fluctuation in field strength,the magnetic-field contribution to Δγ may be large.
基金Supported by a grant(DE-FG02-88ER40424)from U.S.Department of Energy,Office of Nuclear Physics
文摘Recent measurements of charge-dependent azimuthal correlations in high-energy heavy-ion collisions have indicated charge-separation signals perpendicular to the reaction plane, and have been related to the chiral magnetic effect(CME). However, the correlation signal is contaminated with the background caused by the collective motion(flow) of the collision system, and an effective approach is needed to remove the flow background from the correlation. We present a method study with simplified Monte Carlo simulations and a multi-phase transport model,and develop a scheme to reveal the true CME signal via event-shape engineering with the flow vector of the particles of interest.