The modulation of circularly polarized luminescence(CPL) has become an increasingly prominent area of research. In this study,we propose a unique “one-excitation-to-three-emissions” CPL system through the co-assembl...The modulation of circularly polarized luminescence(CPL) has become an increasingly prominent area of research. In this study,we propose a unique “one-excitation-to-three-emissions” CPL system through the co-assembly of an upconversion system,incorporating one sensitizer(Pt(II) mesotetraphenyl tetrabenzoporphyrine, Pt TPBP) and two annihilators(R/S-DPA and R/SBDP) within liquid crystals. The chiral nature of the annihilators induces a transformation of the nematic liquid crystal into chiral nematic liquid crystals(N*LC), establishing an excellent chiral matrix. Upon the incorporation of the sensitizer Pt TPBP and subsequent excitation at 635 nm, the system demonstrates two independent triplet–triplet annihilation photon upconversion(TTA-UC) with the emission in blue and yellow, aided by thermally activated triplet–triplet energy transfer(TTET). This is accompanied by the simultaneous generation of upconverting circularly polarized luminescence(UC-CPL) and downshifting near-infrared circularly polarized luminescence(DS-CPL) originating from the residual luminescence of Pt TPBP. Remarkably,fine-tuning the ratio between the two annihilators allows the TTA-UC system to exhibit multicolor CPL emission with an amplified luminescence dissymmetry factor(glum, reaching up to 0.6). Our study unveils a previously unreported “one-excitation-to-three-emissions” system and provides a versatile strategy for modulating CPL emissions, surpassing conventional methodologies.展开更多
基金supported by the National Natural Science Foundation of China (52173159, 92256304)the National Key Basic R&D Program of Ministry of Science and Technology of the People’s Republic of China (2021YFA1200303)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences (XDB36000000)the Beijing Municipal Science and Technology Commission (JQ21003)。
文摘The modulation of circularly polarized luminescence(CPL) has become an increasingly prominent area of research. In this study,we propose a unique “one-excitation-to-three-emissions” CPL system through the co-assembly of an upconversion system,incorporating one sensitizer(Pt(II) mesotetraphenyl tetrabenzoporphyrine, Pt TPBP) and two annihilators(R/S-DPA and R/SBDP) within liquid crystals. The chiral nature of the annihilators induces a transformation of the nematic liquid crystal into chiral nematic liquid crystals(N*LC), establishing an excellent chiral matrix. Upon the incorporation of the sensitizer Pt TPBP and subsequent excitation at 635 nm, the system demonstrates two independent triplet–triplet annihilation photon upconversion(TTA-UC) with the emission in blue and yellow, aided by thermally activated triplet–triplet energy transfer(TTET). This is accompanied by the simultaneous generation of upconverting circularly polarized luminescence(UC-CPL) and downshifting near-infrared circularly polarized luminescence(DS-CPL) originating from the residual luminescence of Pt TPBP. Remarkably,fine-tuning the ratio between the two annihilators allows the TTA-UC system to exhibit multicolor CPL emission with an amplified luminescence dissymmetry factor(glum, reaching up to 0.6). Our study unveils a previously unreported “one-excitation-to-three-emissions” system and provides a versatile strategy for modulating CPL emissions, surpassing conventional methodologies.