The development of molecular probes or systems with the ability of multiple orthogonal responses is an effective approach to precisely detect biomolecules with similar chemical structures.Herein,we report the synthesi...The development of molecular probes or systems with the ability of multiple orthogonal responses is an effective approach to precisely detect biomolecules with similar chemical structures.Herein,we report the synthesis of a water-soluble TPE-based octacationic cage(1)with the compressed TPE-containing bilayer,which endows it with good fluorescence properties and potential conformation chirality.As a result,1 exhibits molecular recognition for anionic nucleotides within its two“claw”-like cavities to form 1:2 host-guest complexes in water,companying with selective turn-off fluorescence and turn-on CD responses to G/GTP over other nucleotides.展开更多
Comprehensive Summary,Sensing the chirality of molecules is of great importance to fields such as enantioselective synthesis,pharmaceutical industry,and biomedicine.Plasmonic nanoparticles are ideal candidates for mol...Comprehensive Summary,Sensing the chirality of molecules is of great importance to fields such as enantioselective synthesis,pharmaceutical industry,and biomedicine.Plasmonic nanoparticles are ideal candidates for molecular sensing due to their inherent plasmonic properties that significantly enhance their sensitivity to surrounding molecules.Developing plasmonic nanoparticle-molecule complexes for chirality sensing has drawn enormous attention in recent years due to their intriguing properties and potential applications.Thus,in this review,we believe it is timely to circumnavigate the rational design of plasmonic nanoparticle-molecule complexes and widen the scope of their emerging applications in chirality sensing.First,we present different fundamental mechanisms for plasmon-based chirality that are built on the system of plasmonic nanoparticle-molecule complexes.Second,we review the typical applications of plasmonic nanoparticle-molecule complexes in chirality sensing.Third,we discuss the emerging biomedical applications that the plasmon-based chirality has attracted enormous interest.Finally,we provide an outlook on the challenges and opportunities in the field of plasmonic approaches for chirality sensing.展开更多
Chiral metamaterial absorbers(CMMAs),a particular class of chiral metamaterials that refuse the transmission of incident radiation and exhibit different optical responses upon interactions with left and right circular...Chiral metamaterial absorbers(CMMAs),a particular class of chiral metamaterials that refuse the transmission of incident radiation and exhibit different optical responses upon interactions with left and right circularly polarized(RCP)light,have gained research traction in recent years.CMMAs demonstrate numerous exotic and specialized applications owing to their achievable compatibility with various physical,chemical,and biomolecular systems.Aside from their well-evolved fabrication modalities for a broad range of frequencies,CMMAs exhibit strong chiroptical effects,making them central to various detection,imaging,and energy harvesting applications.Consequently,within the past decade,studies encompassing the design,optimization,and fabrication,as well as demonstrating the diverse applications of CMMAs have emerged.In this review,the theory,design,and fabrication of CMMAs are discussed,highlighting their top-down fabrication techniques as well as recent algorithmic and machine-learning(ML)-based approaches to the design and optimization.Some of their broad-spectrum applications are also discussed,spanning their roles in enantioselective photodetection,chiral imaging,generation of hot electrons,selective temperature sensing,and active chiral plasmonics.展开更多
Oriented metal-organic framework(MOF)films are attracting great attention due to their fascinating physicochemical properties and unique functionalities.Here,we report an[110]-oriented biomolecularγ-cyclodextrin(γCD...Oriented metal-organic framework(MOF)films are attracting great attention due to their fascinating physicochemical properties and unique functionalities.Here,we report an[110]-oriented biomolecularγ-cyclodextrin(γCD)MOF film with arrayed CD channels running perpendicular to the substrate surface.This sophisticated architecturewas realized by combining liquid phase epitaxial layer-by-layer(lbl)methods with aγCD-based thiol self-assembled monolayer(SAM)functionalized surface.This first demonstration of the lbl method for MOF growth from aqueous conditions yielded oriented,highly homogeneous,and chiralγCD-SURMOFs(surfacecoordinated MOFs)with tunable thickness.Using a quartz crystal microbalance(QCM)to monitor adsorption of biomolecules,we demonstrated thatγCD-SURMOF provides highly-efficient recognition of tripeptide enantiomers(Tyr-(L-Ala)-Phe vs Tyr-(D-Ala)-Phe),clearly outperformingγCD(SH)_(8) SAMs as well as polycrystalline,mixed-orientationsγCDMOF film.The presence of well-alignedγCD-channels enables highly efficient transport channels with large adsorption capacity and fast loading,along with high enantioselectivity.In addition,the fast and highly specific loading rates allow for the realization of highly specific sensors for biomolecules with short response times.展开更多
基金the National Natural Science Foundation of China(Nos.22122108 and 21971208)the Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China(No.2021JC-37)the Fok Ying Tong Education Foundation(No.171010).
文摘The development of molecular probes or systems with the ability of multiple orthogonal responses is an effective approach to precisely detect biomolecules with similar chemical structures.Herein,we report the synthesis of a water-soluble TPE-based octacationic cage(1)with the compressed TPE-containing bilayer,which endows it with good fluorescence properties and potential conformation chirality.As a result,1 exhibits molecular recognition for anionic nucleotides within its two“claw”-like cavities to form 1:2 host-guest complexes in water,companying with selective turn-off fluorescence and turn-on CD responses to G/GTP over other nucleotides.
基金supported by the National Natural Science Foundation of China(Grant No.22174104 to Q.Z.).L.S.acknowledges the support of the Hubei Provincial Natural Science Foundation of China(Grant No.2022CFB627)the Fundamental Research Funds for the Central Universities(Grant No.20422022kf1039).
文摘Comprehensive Summary,Sensing the chirality of molecules is of great importance to fields such as enantioselective synthesis,pharmaceutical industry,and biomedicine.Plasmonic nanoparticles are ideal candidates for molecular sensing due to their inherent plasmonic properties that significantly enhance their sensitivity to surrounding molecules.Developing plasmonic nanoparticle-molecule complexes for chirality sensing has drawn enormous attention in recent years due to their intriguing properties and potential applications.Thus,in this review,we believe it is timely to circumnavigate the rational design of plasmonic nanoparticle-molecule complexes and widen the scope of their emerging applications in chirality sensing.First,we present different fundamental mechanisms for plasmon-based chirality that are built on the system of plasmonic nanoparticle-molecule complexes.Second,we review the typical applications of plasmonic nanoparticle-molecule complexes in chirality sensing.Third,we discuss the emerging biomedical applications that the plasmon-based chirality has attracted enormous interest.Finally,we provide an outlook on the challenges and opportunities in the field of plasmonic approaches for chirality sensing.
基金the China Postdoctoral Science Foundation under Grant No.2019M663467the National Natural Science Foundation of China under Grant No.62005037+2 种基金the Sichuan Science and Technology Program under Grant No.2020YJ0041the National Key Research and Development Program under Grant No.2019YFB2203400the“111 Project”under Grant No.B20030.
文摘Chiral metamaterial absorbers(CMMAs),a particular class of chiral metamaterials that refuse the transmission of incident radiation and exhibit different optical responses upon interactions with left and right circularly polarized(RCP)light,have gained research traction in recent years.CMMAs demonstrate numerous exotic and specialized applications owing to their achievable compatibility with various physical,chemical,and biomolecular systems.Aside from their well-evolved fabrication modalities for a broad range of frequencies,CMMAs exhibit strong chiroptical effects,making them central to various detection,imaging,and energy harvesting applications.Consequently,within the past decade,studies encompassing the design,optimization,and fabrication,as well as demonstrating the diverse applications of CMMAs have emerged.In this review,the theory,design,and fabrication of CMMAs are discussed,highlighting their top-down fabrication techniques as well as recent algorithmic and machine-learning(ML)-based approaches to the design and optimization.Some of their broad-spectrum applications are also discussed,spanning their roles in enantioselective photodetection,chiral imaging,generation of hot electrons,selective temperature sensing,and active chiral plasmonics.
基金This work was supported by the National Natural Science Foundation of China(grant nos.21872148 and 92161105)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(grant no.2018339)+1 种基金Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(grant no.2021ZR131)C.W.acknowledges support from the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)under the Germany Excellence Strategy via the Excellence Cluster 3D Matter Made to Order(grant no.EXC-2082/1-390761711).
文摘Oriented metal-organic framework(MOF)films are attracting great attention due to their fascinating physicochemical properties and unique functionalities.Here,we report an[110]-oriented biomolecularγ-cyclodextrin(γCD)MOF film with arrayed CD channels running perpendicular to the substrate surface.This sophisticated architecturewas realized by combining liquid phase epitaxial layer-by-layer(lbl)methods with aγCD-based thiol self-assembled monolayer(SAM)functionalized surface.This first demonstration of the lbl method for MOF growth from aqueous conditions yielded oriented,highly homogeneous,and chiralγCD-SURMOFs(surfacecoordinated MOFs)with tunable thickness.Using a quartz crystal microbalance(QCM)to monitor adsorption of biomolecules,we demonstrated thatγCD-SURMOF provides highly-efficient recognition of tripeptide enantiomers(Tyr-(L-Ala)-Phe vs Tyr-(D-Ala)-Phe),clearly outperformingγCD(SH)_(8) SAMs as well as polycrystalline,mixed-orientationsγCDMOF film.The presence of well-alignedγCD-channels enables highly efficient transport channels with large adsorption capacity and fast loading,along with high enantioselectivity.In addition,the fast and highly specific loading rates allow for the realization of highly specific sensors for biomolecules with short response times.